Research Article
BibTex RIS Cite

UNLOCKING THE POTENTIAL OF CHATGPT FOR SOCIAL SCIENCE RESEARCH: APPLICATIONS, CHALLENGES, AND FUTURE DIRECTIONS

Year 2023, , 622 - 656, 30.06.2023
https://doi.org/10.48070/erciyesakademi.1281544

Abstract

The integration of artificial intelligence tools into social science research presents both opportunities and challenges. ChatGPT, a large-scale generative language model, has demonstrated powerful capabilities for generating human-like text and understanding complex linguistic patterns, making it a promising tool for social scientists. This theoretical paper explores the potential of ChatGPT to support research in the social sciences, focusing on its theoretical foundations, potential applications, ethical and societal considerations, and future research directions. We begin by examining the theoretical underpinnings of ChatGPT and discuss its relevance to social science research. We then explore a range of potential applications, including qualitative data analysis, survey and interview design, hypothesis generation, and public opinion modeling. Subsequently, we address the ethical and societal implications of using ChatGPT in social science research, emphasizing the need for responsible development and deployment of AI tools. In light of these opportunities and challenges, we propose a research agenda aimed at addressing limitations, improving model performance, incorporating ethical principles, and fostering interdisciplinary collaboration. We argue that continued investigation and dialogue surrounding AI tools like ChatGPT are crucial for ensuring their responsible and impactful use in social science research. This paper contributes to the theoretical understanding of ChatGPT's potential in social science research and provides a roadmap for future studies, ultimately promoting a deeper understanding of social phenomena and informing evidence-based policies and interventions that enhance societal well-being.

References

  • Alexander, C. S., & Becker, H. J. (1978). The use of vignettes in survey research. Public Opinion Quarterly, 42(1), 93-104. https://doi.org/10.1086/268432
  • APA. (2018). Rules and Procedures.
  • Armstrong, A.B. (2023). Who’s afraid of ChatGPT? An examination of ChatGPT’s implications for legal writing. SSRN. https://ssrn.com/abstract=4336929
  • Aydin, Ö., & Karaarslan, E. (2022). OpenAI ChatGPT Generated Literature Review: Digital Twin in Healthcare. Içinde Ö. Aydın (Ed.), Emerging Computer Technologies 2 (ss. 22-31). İzmir Akademi Dernegi. https://ssrn.com/abstract=4308687
  • Aydin, Ö., & Karaarslan, E. (2023). Is ChatGPT leading generative AI? What is beyond expectations? 1-23. https://ssrn.com/abstract=4341500
  • Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1-15. https://arxiv.org/abs/1409.0473v7
  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.
  • Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation esing Twitter data. Political Analysis, 23(1), 76-91. https://doi.org/10.1093/PAN/MPU011
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? The 2021 ACM Conference on Fairness, Accountability, and Transparency, 610- 623. https://doi.org/10.1145/3442188.3445922
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation . Journal of Machine Learning Research, 3, 993-1022.
  • Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in Neural Information Processing Systems, 29, 4349-4357.
  • Bommarito, J., Bommarito, M. J., Ann Mefford Katz, J., & Katz, D. M. (2023). Gpt as knowledge worker: A zero-shot evaluation of (AI)CPA capabilities. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4322372
  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895. https://doi.org/10.1126/SCIENCE.1165821
  • Boumans, J. W., & Trilling, D. (2018). Taking stock of the toolkit : An overview of relevant automated content analysis approaches and techniques for digital journalism scholars. Içinde Rethinking Research Methods in an Age of Digital Journalism (ss. 8-23). Routledge. https://doi.org/10.4324/9781315115047-2
  • Bozkurt, A., Xiao, J., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S., Farrow, R., Bond, M., Nerantzi, C., Honeychurch, S., Bali, M., Dron, J., Mir, K., Stewart, B., Costello, E., Mason, J., Stracke, C., Romero-Hall, E., Koutropoulos, A., … Jandrić, P. (2023). Speculative futures on ChatGPT and generative artificial intelligence . Asian Journal of Distance Education, 18(1), 53-130.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706QP063OA
  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
  • Bryman, A. (2016). Social Research Methods. Oxford University Press.
  • Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. https://doi.org/10.1126/SCIENCE.AAL4230/SUPPL_FILE/CALISKAN-SM.PDF
  • Castelvecchi, D. (2016). Can we open the black box of AI. Nature, 538(7623), 20-23.
  • Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the “good society”: The US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505-528. https://doi.org/10.1007/S11948- 017-9901-7
  • Chesney, B., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. California Law Review, 107, 1753-1819.
  • Chesterman, S. (2023). AI-generated content is taking over the world. but who owns it?. NUS Law Working Paper No. 2023/002, SSRN. http://dx.doi.org/10.2139/ssrn.4321596
  • Choi, J.H., Hickman, K.E., Monahan, A., Schwarcz, D.B. (2023). ChatGPT goes to law school. SSRN. https://ssrn.com/abstract=4335905
  • Conneau, A., & Lample, G. (2019). Cross-lingual language model pretraining. Advances in Neural Information Processing Systems, 32.
  • Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 1-12. https://doi.org/10.1080/14703297.2023.2190148
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv, 1810.04805. https://arxiv.org/abs/1810.04805v2
  • D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 145-157. https://doi.org/10.1016/J.LEARNINSTRUC.2011.10.001
  • Dowling, M.M., Lucey, B.M. (2023). ChatGPT for (finance) research: The Bananarama Conjecture. SSRN. http://dx.doi.org/10.2139/ssrn.4322651
  • Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211-407. https://doi.org/10.1561/0400000042
  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. MIT Press.
  • Epstein, J. M., & Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up. Brookings Institution Press.
  • Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data. Cambridge University Press.
  • Frye, B. L. (2022). Should using an AI text generator to produce academic writing be plagiarism? Fordham Intellectual Property, Media & Entertainment Law Journal, Forthcoming. https://papers.ssrn.com/abstract=4292283
  • Gates, B. (2023). The Age of AI has begun. https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
  • Gee, J. P. (2014). An Introduction to Discourse Analysis: Theory and Method (4. bs). Routledge.
  • Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models . Cambridge University Press.
  • Gierl, M. J., & Lai, H. (2012). The role of item models in automatic item generation. International Journal of Testing , 12(3), 273-298. https://doi.org/10.1080/15305058.2011.635830
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Graesser, C. C., Wiemer-Hastings, P., Wiemer-Hastings, K., & Harter, D. (2000). Using latent semantic analysis to evaluate the contributions of students in AutoTutor. Interactive Learning Environments, 8(2), 129-147. https://doi.org/10.1076/1049-4820
  • Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267-297. https://doi.org/10.1093/PAN/MPS028
  • Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58. https://doi.org/10.1609/AIMAG.V40I2.2850
  • Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen, A., Halpern, D., Hamrick, J. B., & Chan, P. (2016). psiTurk: An open-source framework for conducting replicable behavioral experiments online. Behavior Research Methods, 48(3), 829-842. https://doi.org/10.3758/S13428-015-0642-8/FIGURES/5
  • Gururangan, S., Marasovic, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A. (2020). Don’t stop pretraining: Adapt language models to domains and tasks. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 8342-8360. https://doi.org/10.18653/v1/2020.acl-main.740
  • Hacker, P. (2022). The European AI liability directives—critique of a half-hearted approach and lessons for the future. arXiv. https://doi.org/10.2139/ssrn.4279796
  • Harari, Y. N. (2023). Yuval Noah Harari argues that AI has hacked the operating system of human civilisation. The Economist. https://www.economist.com/by-invitation/2023/04/28/yuval-noah-harari-argues-that-ai- has-hacked-the-operating-system-of-human-civilisation
  • Harris, Z. S. (1954). Distributional structure. Word, 10(3), 146-162. https://doi.org/10.1080/00437956.1954.11659520
  • Healy, K., & Moody, J. (2014). Data visualization in sociology. Annual Review of Sociology, 40, 105-128. https://doi.org/10.1146/ANNUREV-SOC-071312-145551
  • Holstein, K., Vaughan, J. W., Daumé, H., Dudík, M., & Wallach, H. (2019, Mayıs 2). Improving fairness in machine learning systems: What do industry practitioners need? Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290605.3300830
  • Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 1, 328-339. https://doi.org/10.18653/v1/p18-1031
  • Jackson, P. (1986). Introduction to Expert Systems. Addison-Wesley Pub. Co., Reading, MA. https://doi.org/10.2172/1524639
  • Jeblick, K., Schachtner, B., Dexl, J., Mittermeier, A., Stüber, A. T., Topalis, J., Weber, T., Wesp, P., Sabel, B., Ricke, J., & Ingrisch, M. (2022). ChatGPT makes medicine easy to swallow: An exploratory case study on simplified radiology reports. arXiv. https://doi.org/10.48550/arXiv.2212.14882
  • Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365-379. https://doi.org/10.3102/0013189X09339057
  • Joo, J., Steen, F. F., & Zhu, S.-C. (2015). Automated facial trait judgment and election outcome prediction: Social dimensions of face. Proceedings of the IEEE International Conference on Computer Vision, 3712-3720.
  • Jurafsky, D., & Martin, J. H. (2014). Speech and Language Processing (2. bs). Pearson.
  • King, G., Tomz, M., & Wittenberg, J. (2000). Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science, 44(2), 361. https://doi.org/10.2307/2669316
  • Kitchin, R. (t.y.). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage.
  • Knox, J., & Bayne, S. (2013). Multimodal profusion in the literacies of the Massive Open Online Course. Research in Learning Technology, 21. https://doi.org/10.3402/RLT.V21.21422
  • Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.
  • Krippendorff, K. (2018). Content Analysis: An Introduction to Its Methodology. Sage.
  • Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/J.CHAOS.2020.110059
  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Social science. Computational social science. Science, 323(5915), 721-723. https://doi.org/10.1126/SCIENCE.1167742
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  • Leippold, M. (2023) Sentiment spin: Attacking financial sentiment with GPT-3. Swiss Finance Institute Research Paper No. 23-11. SSRN. http://dx.doi.org/10.2139/ssrn.4337182
  • Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-DF: A large-scale challenging dataset for deepfake forensics. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3207-3216.
  • Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 30-57.
  • Liu, B. (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press. https://doi.org/10.1017/CBO9781139084789
  • Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765-4774.
  • Macy, M. W., & Willer, R. (2003). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143-166. https://doi.org/10.1146/annurev.soc.28.110601.141117
  • Marti, G. (2022). From data to trade: A machine learning approach to quantitative trading. SSRN. http://dx.doi.org/10.2139/ssrn.4315362
  • Mellon, J., Bailey, J., Scott, R., Breckwoldt, J., & Miori, M. (2022). Does GPT-3 know what the most important issue is? Using large language models to code open-text social survey responses at scale. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4310154
  • Metcalf, J., & Crawford, K. (2016). Where are human subjects in Big Data research? The emerging ethics divide. Big Data & Society, 3(1), 1-14. https://doi.org/10.1177/2053951716650211
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111-3119.
  • Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38. https://doi.org/10.1016/J.ARTINT.2018.07.007
  • Montgomery, J. M., Hollenbach, F. M., & Ward, M. D. (2012). Improving predictions using ensemble Bayesian model averaging. Political Analysis, 20(3), 271-291. https://doi.org/10.1093/PAN/MPS002
  • Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106. https://doi.org/10.1257/JEP.31.2.87
  • Nisar, S., & Aslam, M. S. (2023). Is ChatGPT a good tool for T&CM students in studying pharmacology? SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4324310
  • O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Broadway Books.
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. https://doi.org/10.1561/1500000011
  • Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 10776958221149577.
  • Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press.
  • Piaget, J. (1970). Science of education and the psychology of the child. Grossman. https://psycnet.apa.org/record/1970-19308-000
  • Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21, 1-67. https://doi.org/10.5555/3455716.3455856
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144. https://doi.org/10.1145/2939672.2939778
  • Riessman, C. K. (2008). Narrative Methods for the Human Sciences. Sage.
  • Ritter, A., Clark, S., Etzioni, M., & Etzioni, O. (2011). Named entity recognition in tweets: An experimental study. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1524-1534.
  • Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Niessner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. IEEE/CVF International Conference on Computer Vision, 1-11.
  • Rowe, F. (2014). What literature review is not: Diversity, boundaries and recommendations. European Journal of Information Systems, 23(3), 241-255. https://doi.org/10.1057/ejis.2014.7
  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition Volume 1: Foundations. MIT Press.
  • Ryznar, M. (2023). Exams in the time of ChatGPT. https://doi.org/10.2139/ssrn.3684958
  • Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Annals of Internal Medicine, 152(11), 726-732. https://doi.org/10.7326/0003-4819-152-11- 201006010-00232
  • Schwandt, T. A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism. Içinde Handbook of qualitative research (ss. 189-213). SAGE Publishing.
  • Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604. https://doi.org/10.1109/JBHI.2017.2767063
  • Shope, M. (2023). Best practices for disclosure and citation when using artificial ıntelligence tools. SSRN Electronic Journal. https://papers.ssrn.com/abstract=4338115
  • Shute, V. J., & Zapata-Rivera, D. (2007). Adaptive technologies. ETS Research Report Series, 2007(1), i-34. https://doi.org/10.1002/J.2333-8504.2007.TB02047.X
  • Sperlí, G. (2021). A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Systems with Applications, 183, 115277. https://doi.org/10.1016/J.ESWA.2021.115277
  • Steels, L. (2003). Evolving grounded communication for robots. Trends in Cognitive Sciences, 7(7), 308-312. https://doi.org/10.1016/S1364-6613(03)00129-3
  • Susnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv. https://arxiv.org/abs/2212.09292v1
  • Sweeney, L. (2012). k-Anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557-570. https://doi.org/10.1142/S0218488502001648
  • Syed, S., & Spruit, M. (2017). Full-Text or abstract? Examining topic coherence scores using latent dirichlet allocation. 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017, 2018, 165-174. https://doi.org/10.1109/DSAA.2017.61
  • Tomasello, M. (2003). Constructing a Language: A Usage-Based Theory of Language Acquisition. Harvard University Press.
  • Tufekci, Z. (2014). Big questions for social media big data: Representativeness, validity and other methodological pitfalls. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 505- 514. https://doi.org/10.1609/ICWSM.V8I1.14517
  • Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. Fourth International AAAI Conference on Web and Social Media, 4(1), 178-185. https://doi.org/10.1609/ICWSM.V4I1.14009
  • Uludag, K. (2023). The use of AI supported Chatbot in psychology. SSRN https://ssrn.com/abstract=4331367
  • van der Linden, W. J., & Gla, C. A. W. (2010). Elements of Adaptive Testing. Içinde Elements of Adaptive Testing. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-85461-8
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. Advances in Neural Information Processing Systems, 30.
  • Ventayen, R. J. M. (2023). OpenAI ChatGPT generated results: Similarity index of artificial intelligence-based contents. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4332664
  • Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR): A Practical Guide. Içinde A Practical Guide (C. 111, Sayı 5). Springer International Publishing. https://doi.org/10.1007/978-3-319- 57959-7/COVER
  • Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Processes. Harvard University Press.
  • Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 7794-7803.
  • Wang, Y., Huang, M., Zhao, L., & Zhu, X. (2020). Attention-based LSTM for aspect-level sentiment classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 606-615.
  • Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.
  • Watts, D. J. (2013). Computational social science: Exciting progress and future directions. The Bridge on Frontiers of Engineering, 43(4), 5-10. https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=Computational+social+science%3A+Exciting+progress+and+future+directions&btnG =
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918
  • West, D. M. (2019). The Future of Work: Robots, AI, and Automation. Brookings Institution Press.
  • Winkler, R., & Söllner, M. (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. Academy of Management Annual Meeting.
  • Zhai, X. (2023). ChatGPT for next generation science learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4331313
  • Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). Mitigating unwanted biases with adversarial learning. 2018 AAAI/ACM Conference on AI, Ethics, and Society, 18, 335-340. https://doi.org/10.1145/3278721.3278779
  • Zhou, L., Gao, J., Li, D., & Shum, H. Y. (2020). The design and implementation of XiaoIce, an empathetic social chatbot Chatbot. Computational Linguistics, 46(1), 53-93. https://doi.org/10.1162/COLI_A_00368

SOSYAL BİLİMLER ARAŞTIRMALARI İÇİN CHATGPT POTANSİYELİNİN AÇIĞA ÇIKARILMASI: UYGULAMALAR, ZORLUKLAR VE GELECEK YÖNELİMLER

Year 2023, , 622 - 656, 30.06.2023
https://doi.org/10.48070/erciyesakademi.1281544

Abstract

Yapay zekâ araçlarının sosyal bilim araştırmalarına entegrasyonu hem fırsatlar hem de zorluklar sunmaktadır. Büyük ölçekli bir üretici dil modeli olan ChatGPT, insan benzeri metin üretme ve karmaşık dilsel kalıpları anlama konusunda güçlü yetenekler göstererek sosyal bilimciler için umut verici bir araç haline gelmiştir. Bu teorik makale, ChatGPT'nin teorik temellerine, potansiyel uygulamalarına, etik ve toplumsal hususlara ve gelecekteki araştırma yönlerine odaklanarak sosyal bilimlerdeki araştırmaları destekleme potansiyelini araştırmaktadır. ChatGPT'nin teorik temellerini incelemekte ve sosyal bilim araştırmalarıyla ilgisi tartışılmaktadır. Daha sonra nitel veri analizi, anket ve mülakat tasarımı, hipotez oluşturma ve kamuoyu görüşü modellemesi dahil olmak üzere bir dizi potansiyel uygulaması keşfedilmektedir. Daha sonra, ChatGPT'yi sosyal bilim araştırmalarında kullanmanın etik ve toplumsal sonuçlarına değinerek, yapay zekâ araçlarının sorumlu bir şekilde geliştirilmesi ve dağıtılması ihtiyacını vurgulanmaktadır. Bu fırsatlar ve zorluklar ışığında, sınırlamaları ele almayı, model performansını iyileştirmeyi, etik ilkeleri dahil etmeyi ve disiplinler arası iş birliğini teşvik etmeyi amaçlayan bir araştırma gündemi önerilmektedir. Çalışmada, ChatGPT gibi yapay zekâ araçlarını çevreleyen sürekli araştırma ve diyaloğun, sosyal bilim araştırmalarında sorumlu ve etkili kullanımlarını sağlamak için çok önemli olduğunu savunulmaktadır. Bu makale, ChatGPT'nin sosyal bilim araştırmalarındaki potansiyelinin teorik olarak anlaşılmasına katkıda bulunmakta ve gelecekteki çalışmalar için bir yol haritası sunmakta, nihayetinde sosyal fenomenlerin daha derinlemesine anlaşılmasını teşvik etmekte ve toplumsal refahı artıran kanıta dayalı politikalar ve müdahaleler hakkında bilgi vermektedir.

References

  • Alexander, C. S., & Becker, H. J. (1978). The use of vignettes in survey research. Public Opinion Quarterly, 42(1), 93-104. https://doi.org/10.1086/268432
  • APA. (2018). Rules and Procedures.
  • Armstrong, A.B. (2023). Who’s afraid of ChatGPT? An examination of ChatGPT’s implications for legal writing. SSRN. https://ssrn.com/abstract=4336929
  • Aydin, Ö., & Karaarslan, E. (2022). OpenAI ChatGPT Generated Literature Review: Digital Twin in Healthcare. Içinde Ö. Aydın (Ed.), Emerging Computer Technologies 2 (ss. 22-31). İzmir Akademi Dernegi. https://ssrn.com/abstract=4308687
  • Aydin, Ö., & Karaarslan, E. (2023). Is ChatGPT leading generative AI? What is beyond expectations? 1-23. https://ssrn.com/abstract=4341500
  • Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1-15. https://arxiv.org/abs/1409.0473v7
  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.
  • Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation esing Twitter data. Political Analysis, 23(1), 76-91. https://doi.org/10.1093/PAN/MPU011
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? The 2021 ACM Conference on Fairness, Accountability, and Transparency, 610- 623. https://doi.org/10.1145/3442188.3445922
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation . Journal of Machine Learning Research, 3, 993-1022.
  • Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in Neural Information Processing Systems, 29, 4349-4357.
  • Bommarito, J., Bommarito, M. J., Ann Mefford Katz, J., & Katz, D. M. (2023). Gpt as knowledge worker: A zero-shot evaluation of (AI)CPA capabilities. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4322372
  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895. https://doi.org/10.1126/SCIENCE.1165821
  • Boumans, J. W., & Trilling, D. (2018). Taking stock of the toolkit : An overview of relevant automated content analysis approaches and techniques for digital journalism scholars. Içinde Rethinking Research Methods in an Age of Digital Journalism (ss. 8-23). Routledge. https://doi.org/10.4324/9781315115047-2
  • Bozkurt, A., Xiao, J., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S., Farrow, R., Bond, M., Nerantzi, C., Honeychurch, S., Bali, M., Dron, J., Mir, K., Stewart, B., Costello, E., Mason, J., Stracke, C., Romero-Hall, E., Koutropoulos, A., … Jandrić, P. (2023). Speculative futures on ChatGPT and generative artificial intelligence . Asian Journal of Distance Education, 18(1), 53-130.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706QP063OA
  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
  • Bryman, A. (2016). Social Research Methods. Oxford University Press.
  • Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. https://doi.org/10.1126/SCIENCE.AAL4230/SUPPL_FILE/CALISKAN-SM.PDF
  • Castelvecchi, D. (2016). Can we open the black box of AI. Nature, 538(7623), 20-23.
  • Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the “good society”: The US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505-528. https://doi.org/10.1007/S11948- 017-9901-7
  • Chesney, B., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. California Law Review, 107, 1753-1819.
  • Chesterman, S. (2023). AI-generated content is taking over the world. but who owns it?. NUS Law Working Paper No. 2023/002, SSRN. http://dx.doi.org/10.2139/ssrn.4321596
  • Choi, J.H., Hickman, K.E., Monahan, A., Schwarcz, D.B. (2023). ChatGPT goes to law school. SSRN. https://ssrn.com/abstract=4335905
  • Conneau, A., & Lample, G. (2019). Cross-lingual language model pretraining. Advances in Neural Information Processing Systems, 32.
  • Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 1-12. https://doi.org/10.1080/14703297.2023.2190148
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv, 1810.04805. https://arxiv.org/abs/1810.04805v2
  • D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 145-157. https://doi.org/10.1016/J.LEARNINSTRUC.2011.10.001
  • Dowling, M.M., Lucey, B.M. (2023). ChatGPT for (finance) research: The Bananarama Conjecture. SSRN. http://dx.doi.org/10.2139/ssrn.4322651
  • Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211-407. https://doi.org/10.1561/0400000042
  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. MIT Press.
  • Epstein, J. M., & Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up. Brookings Institution Press.
  • Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data. Cambridge University Press.
  • Frye, B. L. (2022). Should using an AI text generator to produce academic writing be plagiarism? Fordham Intellectual Property, Media & Entertainment Law Journal, Forthcoming. https://papers.ssrn.com/abstract=4292283
  • Gates, B. (2023). The Age of AI has begun. https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
  • Gee, J. P. (2014). An Introduction to Discourse Analysis: Theory and Method (4. bs). Routledge.
  • Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models . Cambridge University Press.
  • Gierl, M. J., & Lai, H. (2012). The role of item models in automatic item generation. International Journal of Testing , 12(3), 273-298. https://doi.org/10.1080/15305058.2011.635830
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Graesser, C. C., Wiemer-Hastings, P., Wiemer-Hastings, K., & Harter, D. (2000). Using latent semantic analysis to evaluate the contributions of students in AutoTutor. Interactive Learning Environments, 8(2), 129-147. https://doi.org/10.1076/1049-4820
  • Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267-297. https://doi.org/10.1093/PAN/MPS028
  • Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58. https://doi.org/10.1609/AIMAG.V40I2.2850
  • Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen, A., Halpern, D., Hamrick, J. B., & Chan, P. (2016). psiTurk: An open-source framework for conducting replicable behavioral experiments online. Behavior Research Methods, 48(3), 829-842. https://doi.org/10.3758/S13428-015-0642-8/FIGURES/5
  • Gururangan, S., Marasovic, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A. (2020). Don’t stop pretraining: Adapt language models to domains and tasks. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 8342-8360. https://doi.org/10.18653/v1/2020.acl-main.740
  • Hacker, P. (2022). The European AI liability directives—critique of a half-hearted approach and lessons for the future. arXiv. https://doi.org/10.2139/ssrn.4279796
  • Harari, Y. N. (2023). Yuval Noah Harari argues that AI has hacked the operating system of human civilisation. The Economist. https://www.economist.com/by-invitation/2023/04/28/yuval-noah-harari-argues-that-ai- has-hacked-the-operating-system-of-human-civilisation
  • Harris, Z. S. (1954). Distributional structure. Word, 10(3), 146-162. https://doi.org/10.1080/00437956.1954.11659520
  • Healy, K., & Moody, J. (2014). Data visualization in sociology. Annual Review of Sociology, 40, 105-128. https://doi.org/10.1146/ANNUREV-SOC-071312-145551
  • Holstein, K., Vaughan, J. W., Daumé, H., Dudík, M., & Wallach, H. (2019, Mayıs 2). Improving fairness in machine learning systems: What do industry practitioners need? Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290605.3300830
  • Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 1, 328-339. https://doi.org/10.18653/v1/p18-1031
  • Jackson, P. (1986). Introduction to Expert Systems. Addison-Wesley Pub. Co., Reading, MA. https://doi.org/10.2172/1524639
  • Jeblick, K., Schachtner, B., Dexl, J., Mittermeier, A., Stüber, A. T., Topalis, J., Weber, T., Wesp, P., Sabel, B., Ricke, J., & Ingrisch, M. (2022). ChatGPT makes medicine easy to swallow: An exploratory case study on simplified radiology reports. arXiv. https://doi.org/10.48550/arXiv.2212.14882
  • Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365-379. https://doi.org/10.3102/0013189X09339057
  • Joo, J., Steen, F. F., & Zhu, S.-C. (2015). Automated facial trait judgment and election outcome prediction: Social dimensions of face. Proceedings of the IEEE International Conference on Computer Vision, 3712-3720.
  • Jurafsky, D., & Martin, J. H. (2014). Speech and Language Processing (2. bs). Pearson.
  • King, G., Tomz, M., & Wittenberg, J. (2000). Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science, 44(2), 361. https://doi.org/10.2307/2669316
  • Kitchin, R. (t.y.). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage.
  • Knox, J., & Bayne, S. (2013). Multimodal profusion in the literacies of the Massive Open Online Course. Research in Learning Technology, 21. https://doi.org/10.3402/RLT.V21.21422
  • Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.
  • Krippendorff, K. (2018). Content Analysis: An Introduction to Its Methodology. Sage.
  • Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/J.CHAOS.2020.110059
  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Social science. Computational social science. Science, 323(5915), 721-723. https://doi.org/10.1126/SCIENCE.1167742
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  • Leippold, M. (2023) Sentiment spin: Attacking financial sentiment with GPT-3. Swiss Finance Institute Research Paper No. 23-11. SSRN. http://dx.doi.org/10.2139/ssrn.4337182
  • Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-DF: A large-scale challenging dataset for deepfake forensics. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3207-3216.
  • Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 30-57.
  • Liu, B. (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press. https://doi.org/10.1017/CBO9781139084789
  • Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765-4774.
  • Macy, M. W., & Willer, R. (2003). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143-166. https://doi.org/10.1146/annurev.soc.28.110601.141117
  • Marti, G. (2022). From data to trade: A machine learning approach to quantitative trading. SSRN. http://dx.doi.org/10.2139/ssrn.4315362
  • Mellon, J., Bailey, J., Scott, R., Breckwoldt, J., & Miori, M. (2022). Does GPT-3 know what the most important issue is? Using large language models to code open-text social survey responses at scale. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4310154
  • Metcalf, J., & Crawford, K. (2016). Where are human subjects in Big Data research? The emerging ethics divide. Big Data & Society, 3(1), 1-14. https://doi.org/10.1177/2053951716650211
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111-3119.
  • Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38. https://doi.org/10.1016/J.ARTINT.2018.07.007
  • Montgomery, J. M., Hollenbach, F. M., & Ward, M. D. (2012). Improving predictions using ensemble Bayesian model averaging. Political Analysis, 20(3), 271-291. https://doi.org/10.1093/PAN/MPS002
  • Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106. https://doi.org/10.1257/JEP.31.2.87
  • Nisar, S., & Aslam, M. S. (2023). Is ChatGPT a good tool for T&CM students in studying pharmacology? SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4324310
  • O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Broadway Books.
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. https://doi.org/10.1561/1500000011
  • Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 10776958221149577.
  • Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press.
  • Piaget, J. (1970). Science of education and the psychology of the child. Grossman. https://psycnet.apa.org/record/1970-19308-000
  • Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21, 1-67. https://doi.org/10.5555/3455716.3455856
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144. https://doi.org/10.1145/2939672.2939778
  • Riessman, C. K. (2008). Narrative Methods for the Human Sciences. Sage.
  • Ritter, A., Clark, S., Etzioni, M., & Etzioni, O. (2011). Named entity recognition in tweets: An experimental study. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1524-1534.
  • Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Niessner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. IEEE/CVF International Conference on Computer Vision, 1-11.
  • Rowe, F. (2014). What literature review is not: Diversity, boundaries and recommendations. European Journal of Information Systems, 23(3), 241-255. https://doi.org/10.1057/ejis.2014.7
  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition Volume 1: Foundations. MIT Press.
  • Ryznar, M. (2023). Exams in the time of ChatGPT. https://doi.org/10.2139/ssrn.3684958
  • Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Annals of Internal Medicine, 152(11), 726-732. https://doi.org/10.7326/0003-4819-152-11- 201006010-00232
  • Schwandt, T. A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism. Içinde Handbook of qualitative research (ss. 189-213). SAGE Publishing.
  • Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604. https://doi.org/10.1109/JBHI.2017.2767063
  • Shope, M. (2023). Best practices for disclosure and citation when using artificial ıntelligence tools. SSRN Electronic Journal. https://papers.ssrn.com/abstract=4338115
  • Shute, V. J., & Zapata-Rivera, D. (2007). Adaptive technologies. ETS Research Report Series, 2007(1), i-34. https://doi.org/10.1002/J.2333-8504.2007.TB02047.X
  • Sperlí, G. (2021). A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Systems with Applications, 183, 115277. https://doi.org/10.1016/J.ESWA.2021.115277
  • Steels, L. (2003). Evolving grounded communication for robots. Trends in Cognitive Sciences, 7(7), 308-312. https://doi.org/10.1016/S1364-6613(03)00129-3
  • Susnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv. https://arxiv.org/abs/2212.09292v1
  • Sweeney, L. (2012). k-Anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557-570. https://doi.org/10.1142/S0218488502001648
  • Syed, S., & Spruit, M. (2017). Full-Text or abstract? Examining topic coherence scores using latent dirichlet allocation. 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017, 2018, 165-174. https://doi.org/10.1109/DSAA.2017.61
  • Tomasello, M. (2003). Constructing a Language: A Usage-Based Theory of Language Acquisition. Harvard University Press.
  • Tufekci, Z. (2014). Big questions for social media big data: Representativeness, validity and other methodological pitfalls. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 505- 514. https://doi.org/10.1609/ICWSM.V8I1.14517
  • Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. Fourth International AAAI Conference on Web and Social Media, 4(1), 178-185. https://doi.org/10.1609/ICWSM.V4I1.14009
  • Uludag, K. (2023). The use of AI supported Chatbot in psychology. SSRN https://ssrn.com/abstract=4331367
  • van der Linden, W. J., & Gla, C. A. W. (2010). Elements of Adaptive Testing. Içinde Elements of Adaptive Testing. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-85461-8
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. Advances in Neural Information Processing Systems, 30.
  • Ventayen, R. J. M. (2023). OpenAI ChatGPT generated results: Similarity index of artificial intelligence-based contents. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4332664
  • Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR): A Practical Guide. Içinde A Practical Guide (C. 111, Sayı 5). Springer International Publishing. https://doi.org/10.1007/978-3-319- 57959-7/COVER
  • Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Processes. Harvard University Press.
  • Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 7794-7803.
  • Wang, Y., Huang, M., Zhao, L., & Zhu, X. (2020). Attention-based LSTM for aspect-level sentiment classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 606-615.
  • Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.
  • Watts, D. J. (2013). Computational social science: Exciting progress and future directions. The Bridge on Frontiers of Engineering, 43(4), 5-10. https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=Computational+social+science%3A+Exciting+progress+and+future+directions&btnG =
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918
  • West, D. M. (2019). The Future of Work: Robots, AI, and Automation. Brookings Institution Press.
  • Winkler, R., & Söllner, M. (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. Academy of Management Annual Meeting.
  • Zhai, X. (2023). ChatGPT for next generation science learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4331313
  • Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). Mitigating unwanted biases with adversarial learning. 2018 AAAI/ACM Conference on AI, Ethics, and Society, 18, 335-340. https://doi.org/10.1145/3278721.3278779
  • Zhou, L., Gao, J., Li, D., & Shum, H. Y. (2020). The design and implementation of XiaoIce, an empathetic social chatbot Chatbot. Computational Linguistics, 46(1), 53-93. https://doi.org/10.1162/COLI_A_00368
There are 119 citations in total.

Details

Primary Language Turkish
Subjects Corporate Social Responsibility in Management
Journal Section Articles
Authors

Volkan Aşkun 0000-0003-2746-502X

Publication Date June 30, 2023
Submission Date April 12, 2023
Published in Issue Year 2023

Cite

APA Aşkun, V. (2023). SOSYAL BİLİMLER ARAŞTIRMALARI İÇİN CHATGPT POTANSİYELİNİN AÇIĞA ÇIKARILMASI: UYGULAMALAR, ZORLUKLAR VE GELECEK YÖNELİMLER. Erciyes Akademi, 37(2), 622-656. https://doi.org/10.48070/erciyesakademi.1281544

ERCİYES AKADEMİ | 2021 | erciyesakademi@erciyes.edu.tr Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.