Research Article
BibTex RIS Cite

Manyetik rezonans görüntülemede temporomandibular eklem patolojileri ve sekansın belirlenmesindeChatGPT’nin etkinliği

Year 2025, Volume: 9 Issue: 2, 98 - 103, 29.08.2025
https://doi.org/10.29228/erd.100

Abstract

Amaç: Temporomandibular eklem (TME) patolojileri, TME kompleksi ve çiğneme kaslarının ağrı ve işlev bozukluğu için kullanılan genel bir terimdir. Manyetik rezonans görüntüleme (MRG), TME kompleksini, disk-kondiler ilişkiyi ve disk deplasmanını değerlendirmek için altın standarttır. Bu çalışmanın amacı ChatGPT versiyon 4.0'ın (ChatGPT-V4) TME patolojilerini, kesit düzlemini ve MR görüntülerindeki sekansı belirlemedeki etkinliğini değerlendirmektir.
Gereç ve Yöntemler: Bilateral TME patolojisi olan hastaların yüz MR görüntüsü (200 TME) kaydedildi. TME patolojileri, kesit düzlemi, MR görüntülerinin sırası ve ChatGPT yanıtları değerlendirildi. ChatGPT-V4 yanıtlarındaki alt başlıklar görüntüde varsa doğru, yoksa yanlış olarak kaydedildi. Kesit düzlemi doğru-yanlış ve sekans doğru-yanlış-eksik olarak kategorize edildi.
Bulgular: Tüm görüntülerde ChatGPT-V4 kesit düzlemini doğru şekilde tanıdı. Doğru MR sekansını belirleme oranı %81,5'ti. Eksik sekans tanıma oranı her iki tarafta da %12 idi. Yağ baskılı sekansları tanımlamada başarısız oldu. ChatGPT-V4 görüntülerin %6,5'inde sekansı yanlış tanımladı. ChatGPT-V4'ün TME patolojilerini tanımlama doğruluğu %50,7'de kalmıştır. ChatGPT-V4, anterior disk dislokasyonu ve osteoartrit tanısında en yüksek doğruluğu elde etti.
Sonuç: ChatGPT-V4'e MR görüntülerinin kesit düzlemini ve sekansını kontrol etmek için güvenilebilir. Sonuçlar ChatGPT-V4'ün şu anda MR görüntülerinde TME patolojileriyle ilgili yanıtlar üretme kabiliyetinin sınırlı olduğunu göstermektedir. Bu nedenle ChatGPT bir diş hekiminin yerini alamaz ve hekimler TME patolojilerini kontrol etmek için chatGPT'yi kullanırken bu sınırlamanın farkında olmalıdır.

Ethical Statement

Çalışma Hatay Mustafa Kemal Üniversitesi Etik Kurulu tarafından 19.03.2025 tarih ve 07 sayı ile onaylanmıştır.

Supporting Institution

-

Thanks

-

References

  • Alberts IL, Mercolli L, Pyka T, Prenosil G, Shi K, Rominger A, Afshar-Oromieh A. Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be? Eur J Nucl Med Mol Imaging. 2023 May;50(6):1549-52. doi: 10.1007/s00259-023-06172-w.
  • Bell WE. Temporomandibular disorders. 2nd edition. Chicago: Mosby Inc; 1986.
  • Bertram S, Rudisch A, Innerhofer K, Pümpel E, Grubwieser G, Emshoff R. Diagnosing TMJ internal derangement and osteoarthritis with magnetic resonance imaging. J Am Dent Assoc. 2001 Jun;132(6):753-61. doi: 10.14219/jada.archive.2001.0272.
  • Brin D, Sorin V, Barash Y, Konen E, Glicksberg BS, Nadkarni GN, Klang E. Assessing GPT-4 multimodal performance in radiological image analysis. Eur Radiol. 2024 Aug 30. doi: 10.1007/s00330-024-11035-5. Epub ahead of print.
  • Chelli M, Descamps J, Lavoué V, Trojani C, Azar M, Deckert M, Raynier JL, Clowez G, Boileau P, Ruetsch-Chelli C. Hallucination Rates and Reference Accuracy of ChatGPT and Bard for Systematic Reviews: Comparative Analysis. J Med Internet Res. 2024 May 22;26:e53164. doi: 10.2196/53164.
  • Deiana G, Dettori M, Arghittu A, Azara A, Gabutti G, Castiglia P. Artificial Intelligence and Public Health: Evaluating ChatGPT Responses to Vaccination Myths and Misconceptions. Vaccines (Basel). 2023 Jul 7;11(7):1217. doi: 10.3390/vaccines11071217.
  • Farook TH, Dudley J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review. J Oral Rehabil. 2023 Jun;50(6):501-521. doi: 10.1111/joor.13440.
  • Freire Y, Santamaría Laorden A, Orejas Pérez J, Gómez Sánchez M, Díaz-Flores García V, Suárez A. ChatGPT performance in prosthodontics: Assessment of accuracy and repeatability in answer generation. J Prosthet Dent. 2024 Apr;131(4):659.e1-659.e6. doi: 10.1016/j.prosdent.2024.01.018.
  • Griffıths RH. Report of the president's conference on the examination, diagnosis, and management of temporomandibular disorders. J Am Dent Assoc. 1983 Jan;106(1):75-7. doi: 10.14219/jada.archive.1983.0020.
  • Hasso AN, Christiansen EL, Alder ME. The temporomandibular joint. Radiol Clin North Am. 1989 Mar;27(2):301-14. PMID: 2645604.
  • Kula B, Kula A, Bağcıer F, Alyanak B. Reliability and usefulness of ChatGPT in temporomandibular joint disorders. International Dental Journal. 2024; 74: S3-S4.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159-74. PMID: 843571.
  • Larheim TA, Katzberg RW, Westesson PL, Tallents RH, Moss ME. MR evidence of temporomandibular joint fluid and condyle marrow alterations: occurrence in asymptomatic volunteers and symptomatic patients. Int J Oral Maxillofac Surg. 2001; 30: 113–7. doi: 10.1054/ijom.2000.0018
  • Okeson JP. Temporomandibular disorders and occlusion. 4th edition. St. Louis: Mosby, Inc; 1995.
  • Olliver SJ, Broadbent JM, Thomson WM, Farella M. Occlusal Features and TMJ Clicking: A 30-Year Evaluation from a Cohort Study. J Dent Res. 2020 Oct;99(11):1245-51. doi: 10.1177/0022034520936235.
  • Pan A, Musheyev D, Bockelman D, Loeb S, Kabarriti AE. Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer. JAMA Oncol. 2023 Oct 1;9(10):1437-40. doi: 10.1001/jamaoncol.2023.2947.
  • Ren Y, Guo Y, He Q, Cheng Z, Huang Q, Yang L. Exploring whether ChatGPT-4 with image analysis capabilities can diagnose osteosarcoma from X-ray images. Exp Hematol Oncol. 2024 Jul 27;13(1):71. doi: 10.1186/s40164-024-00537-z.
  • Roh HS, Kim W, Kim YK, Lee JY. Relationships between disk displacement, joint effusion, and degenerative changes of the TMJ in TMD patients based on MRI findings. J Craniomaxillofac Surg. 2012; 40: 283–6. doi: 10.1016/j.jcms.2011.04.006
  • Sinha RK, Deb Roy A, Kumar N, Mondal H. Applicability of ChatGPT in Assisting to Solve Higher Order Problems in Pathology. Cureus. 2023 Feb 20;15(2):e35237. doi: 10.7759/cureus.35237
  • Stegenga B. Nomenclature and classification of temporomandibular joint disorders. J Oral Rehabil. 2010 Oct;37(10):760-5. doi: 10.1111/j.1365-2842.2010.02146.x.
  • Yan Z, Zhang K, Zhou R, He L, Li X, Sun L. Multimodal ChatGPT for medical applications: an experimental study of GPT-4V. 2023; Preprint at https:// doi.org/10.48550/arXiv.2310.19061

The Effectiveness of ChatGPT in Temporomandibular Joint Pathologies and Sequence Determination in Magnetic Resonance Imaging

Year 2025, Volume: 9 Issue: 2, 98 - 103, 29.08.2025
https://doi.org/10.29228/erd.100

Abstract

Objectives: Temporomandibular joint (TMJ) pathologies is a general term for pain and dysfunction of the TMJ complex and masticatory muscles. Magnetic resonance imaging (MRI) is the gold standard for evaluating the TMJ complex, disc-condylar relationship and disc displacement. The aim of this study was to evaluate the effectiveness of ChatGPT version 4.0 (ChatGPT-V4) in identifying TMJ pathologies, slice plane and sequence in MR images.
Materials and Methods: One hundred MR images of patients with bilateral TMJ pathology (200 TMJs) were recorded. TMJ pathologies, slice plane, sequence of the MR images and ChatGPT responses were evaluated. The subheadings in the ChatGPT-V4 answers were recorded as true if present in the image and false if not. The slice plane was categorized as true-false and the sequence as true-false-missing.
Results: In all images, ChatGPT-V4 correctly recognized the slice plane. The correct MR sequence recognition rate was 81.5%. Missing sequence recognition rate was 12% on both sides. It failed to identify the fat-suppressed sequences. ChatGPT-V4 misidentified the sequence in 6.5% of the images. The accuracy of ChatGPT-V4 in identifying TMJ pathologies remained at 50.7%. ChatGPT-V4 achieved the highest accuracy in the diagnosis of anterior disc dislocation and osteoarthritis.
Conclusions: ChatGPT-V4 can be relied upon to control the slice plane and sequence of MR images. The results show that ChatGPT-V4 is currently limited in its ability to produce responses related to TMJ pathologies on MR images. Therefore, ChatGPT cannot replace a dentist and physicians should be aware of this limitation during their use of chatGPT to check for TMJ pathologies.

Ethical Statement

The study was approved by the institutional board of Hatay Mustafa Kemal University Ethics Committee with the number 07 and dated 19.03.2025.

Supporting Institution

None

Thanks

None

References

  • Alberts IL, Mercolli L, Pyka T, Prenosil G, Shi K, Rominger A, Afshar-Oromieh A. Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be? Eur J Nucl Med Mol Imaging. 2023 May;50(6):1549-52. doi: 10.1007/s00259-023-06172-w.
  • Bell WE. Temporomandibular disorders. 2nd edition. Chicago: Mosby Inc; 1986.
  • Bertram S, Rudisch A, Innerhofer K, Pümpel E, Grubwieser G, Emshoff R. Diagnosing TMJ internal derangement and osteoarthritis with magnetic resonance imaging. J Am Dent Assoc. 2001 Jun;132(6):753-61. doi: 10.14219/jada.archive.2001.0272.
  • Brin D, Sorin V, Barash Y, Konen E, Glicksberg BS, Nadkarni GN, Klang E. Assessing GPT-4 multimodal performance in radiological image analysis. Eur Radiol. 2024 Aug 30. doi: 10.1007/s00330-024-11035-5. Epub ahead of print.
  • Chelli M, Descamps J, Lavoué V, Trojani C, Azar M, Deckert M, Raynier JL, Clowez G, Boileau P, Ruetsch-Chelli C. Hallucination Rates and Reference Accuracy of ChatGPT and Bard for Systematic Reviews: Comparative Analysis. J Med Internet Res. 2024 May 22;26:e53164. doi: 10.2196/53164.
  • Deiana G, Dettori M, Arghittu A, Azara A, Gabutti G, Castiglia P. Artificial Intelligence and Public Health: Evaluating ChatGPT Responses to Vaccination Myths and Misconceptions. Vaccines (Basel). 2023 Jul 7;11(7):1217. doi: 10.3390/vaccines11071217.
  • Farook TH, Dudley J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review. J Oral Rehabil. 2023 Jun;50(6):501-521. doi: 10.1111/joor.13440.
  • Freire Y, Santamaría Laorden A, Orejas Pérez J, Gómez Sánchez M, Díaz-Flores García V, Suárez A. ChatGPT performance in prosthodontics: Assessment of accuracy and repeatability in answer generation. J Prosthet Dent. 2024 Apr;131(4):659.e1-659.e6. doi: 10.1016/j.prosdent.2024.01.018.
  • Griffıths RH. Report of the president's conference on the examination, diagnosis, and management of temporomandibular disorders. J Am Dent Assoc. 1983 Jan;106(1):75-7. doi: 10.14219/jada.archive.1983.0020.
  • Hasso AN, Christiansen EL, Alder ME. The temporomandibular joint. Radiol Clin North Am. 1989 Mar;27(2):301-14. PMID: 2645604.
  • Kula B, Kula A, Bağcıer F, Alyanak B. Reliability and usefulness of ChatGPT in temporomandibular joint disorders. International Dental Journal. 2024; 74: S3-S4.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159-74. PMID: 843571.
  • Larheim TA, Katzberg RW, Westesson PL, Tallents RH, Moss ME. MR evidence of temporomandibular joint fluid and condyle marrow alterations: occurrence in asymptomatic volunteers and symptomatic patients. Int J Oral Maxillofac Surg. 2001; 30: 113–7. doi: 10.1054/ijom.2000.0018
  • Okeson JP. Temporomandibular disorders and occlusion. 4th edition. St. Louis: Mosby, Inc; 1995.
  • Olliver SJ, Broadbent JM, Thomson WM, Farella M. Occlusal Features and TMJ Clicking: A 30-Year Evaluation from a Cohort Study. J Dent Res. 2020 Oct;99(11):1245-51. doi: 10.1177/0022034520936235.
  • Pan A, Musheyev D, Bockelman D, Loeb S, Kabarriti AE. Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer. JAMA Oncol. 2023 Oct 1;9(10):1437-40. doi: 10.1001/jamaoncol.2023.2947.
  • Ren Y, Guo Y, He Q, Cheng Z, Huang Q, Yang L. Exploring whether ChatGPT-4 with image analysis capabilities can diagnose osteosarcoma from X-ray images. Exp Hematol Oncol. 2024 Jul 27;13(1):71. doi: 10.1186/s40164-024-00537-z.
  • Roh HS, Kim W, Kim YK, Lee JY. Relationships between disk displacement, joint effusion, and degenerative changes of the TMJ in TMD patients based on MRI findings. J Craniomaxillofac Surg. 2012; 40: 283–6. doi: 10.1016/j.jcms.2011.04.006
  • Sinha RK, Deb Roy A, Kumar N, Mondal H. Applicability of ChatGPT in Assisting to Solve Higher Order Problems in Pathology. Cureus. 2023 Feb 20;15(2):e35237. doi: 10.7759/cureus.35237
  • Stegenga B. Nomenclature and classification of temporomandibular joint disorders. J Oral Rehabil. 2010 Oct;37(10):760-5. doi: 10.1111/j.1365-2842.2010.02146.x.
  • Yan Z, Zhang K, Zhou R, He L, Li X, Sun L. Multimodal ChatGPT for medical applications: an experimental study of GPT-4V. 2023; Preprint at https:// doi.org/10.48550/arXiv.2310.19061
There are 21 citations in total.

Details

Primary Language English
Subjects Oral and Maxillofacial Radiology, Dentistry (Other)
Journal Section Original Articles
Authors

Gözde Serindere 0000-0001-7439-3554

Ceren Aktuna Belgin 0000-0001-7780-3395

Kaan Gündüz 0000-0002-0464-1978

Early Pub Date August 29, 2025
Publication Date August 29, 2025
Submission Date April 19, 2025
Acceptance Date June 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Serindere, G., Aktuna Belgin, C., & Gündüz, K. (2025). The Effectiveness of ChatGPT in Temporomandibular Joint Pathologies and Sequence Determination in Magnetic Resonance Imaging. European Journal of Research in Dentistry, 9(2), 98-103. https://doi.org/10.29228/erd.100