Research Article
BibTex RIS Cite

Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey

Year 2021, Volume: 4 Issue: 1, 1 - 17, 31.03.2021
https://doi.org/10.35208/ert.777323

Abstract

To assess climate change impact on the hydrology of Izmit Bay, a coupled model chain using the results of four combinations of Global Climate Models (GCMs) and Regional Climate Models (RCMs) and consisting two hydrological models (mGROWA and PROMET) and one hydrodynamic model (MIKE 3HD) was established. Climate model data of the 4 GCM-RCM combinations were applied to both hydrological models. The resulting 8 streamflow data of the hydrological models were then applied to the MIKE 3HD to assess possible hydrodynamic situations in Izmit Bay. Related model results indicate a range of possible future streamflow regimes suitable for the analysis of climate change impact on Izmit Bay. In order to evaluate the effects of the hydrological changes only on the bay, the bay was considered as closed in terms of hydrodynamics. There is a clear indication that the climate change induced impacts on streamflow may influence the sea level in the Bay to a minor extent. However, climate change induced water exchange processes in the Bay may have a much bigger influence. Hence, it is suggested that further simulations should be run once the hydrologic regime of the Marmara Sea has been assessed in a broader macro-scale study.

Supporting Institution

European Union 7th Framework Programme

Project Number

Grant number: 244151

Thanks

This work was supported by the European Union 7th Framework Programme [Grant number 244151]

References

  • 1. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp. 151.
  • 2. S.N. Gosling, R.G. Taylor, N.W. Arnell, M.C. Todd, “A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models,” Hydrology and Earth System Science, 15, 279-294, 2011.
  • 3. A.J. Lamadrid and K.L. MacClune, Climate and Hydrological Modeling in the Hindu-Kush Himalaya Region. Feasibility Report for a Himalayan Climate change Impact and Adaptation Assessment. International Centre for Integrated Mountain Development. Kathmandu, 2010.
  • 4. A. Panagopoulos, G. Arampatzis, E. Tziritis, V. Pisinaras, F. Herrmann, R. Kunkel, F. Wendland, “Assessment of climate change impact in the hydrological regime of River Pinios Basin, Central Greece,” Desalination and Water Treatment, 57, 2256-2267, 2016.
  • 5. S. Praskievicz and H. Chang, “A review of hydrological modeling of basin-scale climate change and urban development impacts,” Progress in Physical Geography, 33, 650–671, 2009.
  • 6. K.M. Strzepek and A.L. Mccluskey. Modeling the Impact of Climate Change on Global Hydrology and Water Availability - Discussion Paper Number 8, 2010.
  • 7. The Turkish Statistical Institute, TUIK (http://www.tuik.gov.tr).
  • 8. V.P. Singh, “Computer models of watershed hydrology,” Water Resources Publications, Colorado, 1995.
  • 9. M. Albek, U. Bakır Ogutveren, E. Albek, “Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF,” Journal of Hydrology, 285, 260–271, 2004.
  • 10. H. Apaydin, A.S. Anli, A. Ozturk. “The temporal transferability of calibrated parameters of a hydrological model,” Ecological Modelling, 195, 307–317, 2006.
  • 11. P. Droogers, W.G.M. Bastiaanssen, M. Beyazgul, Y. Kayam, G.W. Kite, H. Murray Rust, “Distributed agro-hydrological modeling of an irrigation system in western Turkey,” Agricultural Water Management 43, 183-202, 2000.
  • 12. F. Keskin, “Hydrological model study in Yuvacik dam basin by using GIS analysis,” (Doctoral dissertation). Middle East Technical University, 2007.
  • 13. G. Benito, N.G. Macklin, C. Zielhofer, A.F. Jones, M.J. Machado, “Holocene flooding and climate change in the Mediterranean,” Catena, 130, 13–33, 2015.
  • 14. D. Bozkurt and O.L. Sen, “Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations,” Journal of Hydrology, 480, 149–161, 2013.
  • 15. A. Erturk, A. Ekdal, M. Gurel, N. Karakaya, C. Guzel, E. Gonenc, “Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed,” Science of the Total Environment, 499, 437–447, 2014.
  • 16. Y. Fujihara, K. Tanaka, T. Watanabe, T. Nagano, T. Kojiri, “Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations,” Journal of Hydrology, 353, 33-48, 2008.
  • 17. R. Deidda, M. Marrocu, G. Caroletti, G. Pusceddu, A. Langousis, V. Lucarini, A. Speranza, “Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas,” Hydrology and Earth System Sciences, 17, 5041-5059, 2013.
  • 18. R. Ludwig, A. Soddu, R. Duttmann, N. Baghdadi, S. Benabdallah, R. Deidda, T. Ammerl, “Climate-Induced Changes on the Hydrology of Mediterranean Basins – A Research Concept to Reduce Uncertainty and Quantify Risk,” Fresenius Environmental Bulletin, 19 (10a), 2379 – 2384, 2010.
  • 19. W. Mauser and H. Bach, “PROMET - Large scale distributed hydrological modeling to study the impact of climate change on the water flows of mountain watersheds,” Journal of Hydrology, 376, 362-377, 2009.
  • 20. L. Ehlers, F. Herrmann, M. Blaschek, F. Wendland, R. Duttmann, “Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations,” Science of the Total Environment, 543, 937-951, 2015.
  • 21. F. Herrmann, L. Keller, R. Kunkel H. Vereecken, F. Wendland, “Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level – A case study using the mGROWA model in North Rhine-Westphalia (Germany),” Journal of Hydrology: Regional Studies, 4, 294-312, 2015.
  • 22. P. Kreins, M. Henseler, J. Anter, F. Herrmann, F. Wendland, “Quantification of Climate Change Impact on Regional Agricultural Irrigation and Groundwater Demand,” Water Resources Management, 29, 3585-3600, 2015.
  • 23. DHI. MIKE 21 MIKE 3 Flow Model FM, Short description of Hydrodynamic Module. DHI Software. Denmark, 2013.
  • 24. Kocaeli Mayorship, Kocaeli Environmental Status Report. http://cdr.cevre.gov.tr/2010_icdrler/kocaeliicd2010.pdf. (accessed 1.12.2015) 2006.
  • 25. Kocaeli Govornership, Turkish Government http://www.kocaeli.gov.tr/sanayi-kenti-kocaeli. (accessed 6.7.2017) 2017.
  • 26. H.A. Ergül, T. Varol, U. Ay, “Investigation of heavy metal pollutants at various depths in the Gulf of Izmit,” Marine Pollution Bulletin, 73, 389–393, 2013.
  • 27. E. Morkoç, O.S. Okay, L. Tolun, V. Tufekçi, H. Tufekçi, T. Legoviç, “Towards a clean Izmit Bay,” Environmental International, 26, 157–161, 2001.
  • 28. L. Tolun, O.S. Okay, A.F. Gaines, M. Tolay, H. Tüfekçi, N. Kıratlı. “The pollution and toxicity of surface sediments in Izmit Bay (Marmara Sea),” Turkey. Environmental International, 26, 163–168, 2001.
  • 29. L. Tolun, O.S. Okay, D. Martens, K.W. Schramm, “Polycyclic aromatic hydrocarbon contamination in coastal sediments of the Izmit Bay (Marmara Sea): Case studies before and after the Izmit Earthquake,” Environment International, 32, 758-765, 2006.
  • 30. M. Karpuzcu, N. Agiralioglu, N. Alpaslan, G. Engin, H. Gömann, O. Gunduz, F. Wendland. Integrated Modeling of Nutrients in Selected River Basins of Turkey. Schriften des Forschungszentrums. Jülich, Reihe Energie & Umwelt Vol. 17, 183 pages Jülich, 2008.
  • 31. H. Bach, M. Braun, G. Lampart, W. Mauser, “The use of remote sensing for hydrological parameterisation of Alpine catchments,” Hydrology and Earth System Sciences, 7, 862–876, 2003.
  • 32. R. Ludwig, W. Mauser, S. Niemeyer, A. Colgan, R. Stolz, H. Escher-Vetter, R. Hennicker, “Web-based modeling of energy, water and matter fluxes to support decision making in mesoscale catchments - the integrative perspective of GLOWA-Danube,” Physics and Chemistry of the Earth, 28, 621–634, 2003.
  • 33. W. Mauser and R. Ludwig. A research concept to develop integrative techniques, scenarios and strategies regarding global changes of the water cycl.. In: M. Beniston (Ed.), Climatic Change: Implications for the Hydrological Cycle and for Water Management: Advances in Global Change Research GLOWA-DANUBE. Kluwer Academic Publishers, Dordrecht and Boston, pp 171–188, 2002.
  • 34. P. Klug, H. Bach, S. Migdall, Monitoring Soil Infiltration in Semi-Arid Regions with Meteosat and a Coupled Model Approach Using PROMET and SLC. Paper presented at the meeting of ESA Living Planet Symposium, Edinburgh, 2013.
  • 35. H. Bach, W. Verhoef, K. Schneider, “Coupling remote sensing observation models and a growth model for improved retrieval of (geo)biophysical information from optical remote sensing data,” Remote Sensing for Agriculture, Ecosystems and Hydrology, 4171, 1–11, 2000.
  • 36. R. Ludwig and W. Mauser, “Modeling catchment hydrology within a GIS based SWAT-model framework,” Hydrology and Earth System Science, 4(2), 239–249, 2000.
  • 37. U. Strasser and W. Mauser, “Modeling the spatial and temporal variations of the water balance for the Weser catchment” 1965–1994. Journal of Hydrology, 254 (1-4), 199-214, 2001.
  • 38. J.A. Cunge, “On the subject of a flood propagation computation method (Muskingum method),” Journal of Hydraulic Research, 7, 205–230, 1969.
  • 39. E. Todini, A mass conservative and water storage consistent variable parameter Muskingum-Cungeapproach. Hydrol. Earth System Science, 4, 1549–1592, 2007.
  • 40. W. Verhoef and H. Bach, “Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data,” Remote Sensing of Environment, 109, 166-182, 2007.
  • 41. R. Kunkel, H. Röhm, J. Elbracht, F. Wendland, “Das CLINT Interpolationsmodell zur Regionalisierung von Klimadaten und WETTREG Klimaprojektionen für Analysen zum regionalen Boden-und Grundwasserhaushalt in Niedersachsen und Bremen. GeoBerichte-Landesamt für Bergbau”, Energie und Geologie, 20, 6-31, 2012.
  • 42. T. Marke, W. Mauser, A. Pfeiffer, G. Zängl, “A pragmatic approach for the downscaling and bias correction of regional climate simulations: evaluation in hydrological modeling,” Geoscientific Model Development, 4, 759-770, 2011.
  • 43. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
  • 44. R. Kunkel and F. Wendland, “The GROWA98 model for water balance analysis in large river basins - the river Elbe case study,” Journal of Hydrology, 259, 152-162, 2002.
  • 45. N. Engel, U. Müller, W. Schäfer, “BOWAB - Ein Mehrschicht-Bodenwasserhaushaltsmodell,” GeoBerichte - Landesamt für Bergbau, Energie und Geologie, 20, 85-98, 2012.
  • 46. E. Strandhagen, W.A. Marcus, J.E. Meacham, “Views of the Rivers: Representing Streamflow of the Greater Yellowstone Ecosystem,” Cartographic Perspectives, 55, 54-59, 2006.
  • 47. U. Müller and A. Waldeck, Auswertungsmethoden im Bodenschutz. Vol 19: Landesamt für Bergbau, Energie und Geologie Niedersachsen, 2011.
Year 2021, Volume: 4 Issue: 1, 1 - 17, 31.03.2021
https://doi.org/10.35208/ert.777323

Abstract

Project Number

Grant number: 244151

References

  • 1. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp. 151.
  • 2. S.N. Gosling, R.G. Taylor, N.W. Arnell, M.C. Todd, “A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models,” Hydrology and Earth System Science, 15, 279-294, 2011.
  • 3. A.J. Lamadrid and K.L. MacClune, Climate and Hydrological Modeling in the Hindu-Kush Himalaya Region. Feasibility Report for a Himalayan Climate change Impact and Adaptation Assessment. International Centre for Integrated Mountain Development. Kathmandu, 2010.
  • 4. A. Panagopoulos, G. Arampatzis, E. Tziritis, V. Pisinaras, F. Herrmann, R. Kunkel, F. Wendland, “Assessment of climate change impact in the hydrological regime of River Pinios Basin, Central Greece,” Desalination and Water Treatment, 57, 2256-2267, 2016.
  • 5. S. Praskievicz and H. Chang, “A review of hydrological modeling of basin-scale climate change and urban development impacts,” Progress in Physical Geography, 33, 650–671, 2009.
  • 6. K.M. Strzepek and A.L. Mccluskey. Modeling the Impact of Climate Change on Global Hydrology and Water Availability - Discussion Paper Number 8, 2010.
  • 7. The Turkish Statistical Institute, TUIK (http://www.tuik.gov.tr).
  • 8. V.P. Singh, “Computer models of watershed hydrology,” Water Resources Publications, Colorado, 1995.
  • 9. M. Albek, U. Bakır Ogutveren, E. Albek, “Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF,” Journal of Hydrology, 285, 260–271, 2004.
  • 10. H. Apaydin, A.S. Anli, A. Ozturk. “The temporal transferability of calibrated parameters of a hydrological model,” Ecological Modelling, 195, 307–317, 2006.
  • 11. P. Droogers, W.G.M. Bastiaanssen, M. Beyazgul, Y. Kayam, G.W. Kite, H. Murray Rust, “Distributed agro-hydrological modeling of an irrigation system in western Turkey,” Agricultural Water Management 43, 183-202, 2000.
  • 12. F. Keskin, “Hydrological model study in Yuvacik dam basin by using GIS analysis,” (Doctoral dissertation). Middle East Technical University, 2007.
  • 13. G. Benito, N.G. Macklin, C. Zielhofer, A.F. Jones, M.J. Machado, “Holocene flooding and climate change in the Mediterranean,” Catena, 130, 13–33, 2015.
  • 14. D. Bozkurt and O.L. Sen, “Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations,” Journal of Hydrology, 480, 149–161, 2013.
  • 15. A. Erturk, A. Ekdal, M. Gurel, N. Karakaya, C. Guzel, E. Gonenc, “Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed,” Science of the Total Environment, 499, 437–447, 2014.
  • 16. Y. Fujihara, K. Tanaka, T. Watanabe, T. Nagano, T. Kojiri, “Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations,” Journal of Hydrology, 353, 33-48, 2008.
  • 17. R. Deidda, M. Marrocu, G. Caroletti, G. Pusceddu, A. Langousis, V. Lucarini, A. Speranza, “Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas,” Hydrology and Earth System Sciences, 17, 5041-5059, 2013.
  • 18. R. Ludwig, A. Soddu, R. Duttmann, N. Baghdadi, S. Benabdallah, R. Deidda, T. Ammerl, “Climate-Induced Changes on the Hydrology of Mediterranean Basins – A Research Concept to Reduce Uncertainty and Quantify Risk,” Fresenius Environmental Bulletin, 19 (10a), 2379 – 2384, 2010.
  • 19. W. Mauser and H. Bach, “PROMET - Large scale distributed hydrological modeling to study the impact of climate change on the water flows of mountain watersheds,” Journal of Hydrology, 376, 362-377, 2009.
  • 20. L. Ehlers, F. Herrmann, M. Blaschek, F. Wendland, R. Duttmann, “Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations,” Science of the Total Environment, 543, 937-951, 2015.
  • 21. F. Herrmann, L. Keller, R. Kunkel H. Vereecken, F. Wendland, “Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level – A case study using the mGROWA model in North Rhine-Westphalia (Germany),” Journal of Hydrology: Regional Studies, 4, 294-312, 2015.
  • 22. P. Kreins, M. Henseler, J. Anter, F. Herrmann, F. Wendland, “Quantification of Climate Change Impact on Regional Agricultural Irrigation and Groundwater Demand,” Water Resources Management, 29, 3585-3600, 2015.
  • 23. DHI. MIKE 21 MIKE 3 Flow Model FM, Short description of Hydrodynamic Module. DHI Software. Denmark, 2013.
  • 24. Kocaeli Mayorship, Kocaeli Environmental Status Report. http://cdr.cevre.gov.tr/2010_icdrler/kocaeliicd2010.pdf. (accessed 1.12.2015) 2006.
  • 25. Kocaeli Govornership, Turkish Government http://www.kocaeli.gov.tr/sanayi-kenti-kocaeli. (accessed 6.7.2017) 2017.
  • 26. H.A. Ergül, T. Varol, U. Ay, “Investigation of heavy metal pollutants at various depths in the Gulf of Izmit,” Marine Pollution Bulletin, 73, 389–393, 2013.
  • 27. E. Morkoç, O.S. Okay, L. Tolun, V. Tufekçi, H. Tufekçi, T. Legoviç, “Towards a clean Izmit Bay,” Environmental International, 26, 157–161, 2001.
  • 28. L. Tolun, O.S. Okay, A.F. Gaines, M. Tolay, H. Tüfekçi, N. Kıratlı. “The pollution and toxicity of surface sediments in Izmit Bay (Marmara Sea),” Turkey. Environmental International, 26, 163–168, 2001.
  • 29. L. Tolun, O.S. Okay, D. Martens, K.W. Schramm, “Polycyclic aromatic hydrocarbon contamination in coastal sediments of the Izmit Bay (Marmara Sea): Case studies before and after the Izmit Earthquake,” Environment International, 32, 758-765, 2006.
  • 30. M. Karpuzcu, N. Agiralioglu, N. Alpaslan, G. Engin, H. Gömann, O. Gunduz, F. Wendland. Integrated Modeling of Nutrients in Selected River Basins of Turkey. Schriften des Forschungszentrums. Jülich, Reihe Energie & Umwelt Vol. 17, 183 pages Jülich, 2008.
  • 31. H. Bach, M. Braun, G. Lampart, W. Mauser, “The use of remote sensing for hydrological parameterisation of Alpine catchments,” Hydrology and Earth System Sciences, 7, 862–876, 2003.
  • 32. R. Ludwig, W. Mauser, S. Niemeyer, A. Colgan, R. Stolz, H. Escher-Vetter, R. Hennicker, “Web-based modeling of energy, water and matter fluxes to support decision making in mesoscale catchments - the integrative perspective of GLOWA-Danube,” Physics and Chemistry of the Earth, 28, 621–634, 2003.
  • 33. W. Mauser and R. Ludwig. A research concept to develop integrative techniques, scenarios and strategies regarding global changes of the water cycl.. In: M. Beniston (Ed.), Climatic Change: Implications for the Hydrological Cycle and for Water Management: Advances in Global Change Research GLOWA-DANUBE. Kluwer Academic Publishers, Dordrecht and Boston, pp 171–188, 2002.
  • 34. P. Klug, H. Bach, S. Migdall, Monitoring Soil Infiltration in Semi-Arid Regions with Meteosat and a Coupled Model Approach Using PROMET and SLC. Paper presented at the meeting of ESA Living Planet Symposium, Edinburgh, 2013.
  • 35. H. Bach, W. Verhoef, K. Schneider, “Coupling remote sensing observation models and a growth model for improved retrieval of (geo)biophysical information from optical remote sensing data,” Remote Sensing for Agriculture, Ecosystems and Hydrology, 4171, 1–11, 2000.
  • 36. R. Ludwig and W. Mauser, “Modeling catchment hydrology within a GIS based SWAT-model framework,” Hydrology and Earth System Science, 4(2), 239–249, 2000.
  • 37. U. Strasser and W. Mauser, “Modeling the spatial and temporal variations of the water balance for the Weser catchment” 1965–1994. Journal of Hydrology, 254 (1-4), 199-214, 2001.
  • 38. J.A. Cunge, “On the subject of a flood propagation computation method (Muskingum method),” Journal of Hydraulic Research, 7, 205–230, 1969.
  • 39. E. Todini, A mass conservative and water storage consistent variable parameter Muskingum-Cungeapproach. Hydrol. Earth System Science, 4, 1549–1592, 2007.
  • 40. W. Verhoef and H. Bach, “Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data,” Remote Sensing of Environment, 109, 166-182, 2007.
  • 41. R. Kunkel, H. Röhm, J. Elbracht, F. Wendland, “Das CLINT Interpolationsmodell zur Regionalisierung von Klimadaten und WETTREG Klimaprojektionen für Analysen zum regionalen Boden-und Grundwasserhaushalt in Niedersachsen und Bremen. GeoBerichte-Landesamt für Bergbau”, Energie und Geologie, 20, 6-31, 2012.
  • 42. T. Marke, W. Mauser, A. Pfeiffer, G. Zängl, “A pragmatic approach for the downscaling and bias correction of regional climate simulations: evaluation in hydrological modeling,” Geoscientific Model Development, 4, 759-770, 2011.
  • 43. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
  • 44. R. Kunkel and F. Wendland, “The GROWA98 model for water balance analysis in large river basins - the river Elbe case study,” Journal of Hydrology, 259, 152-162, 2002.
  • 45. N. Engel, U. Müller, W. Schäfer, “BOWAB - Ein Mehrschicht-Bodenwasserhaushaltsmodell,” GeoBerichte - Landesamt für Bergbau, Energie und Geologie, 20, 85-98, 2012.
  • 46. E. Strandhagen, W.A. Marcus, J.E. Meacham, “Views of the Rivers: Representing Streamflow of the Greater Yellowstone Ecosystem,” Cartographic Perspectives, 55, 54-59, 2006.
  • 47. U. Müller and A. Waldeck, Auswertungsmethoden im Bodenschutz. Vol 19: Landesamt für Bergbau, Energie und Geologie Niedersachsen, 2011.
There are 47 citations in total.

Details

Primary Language English
Subjects Environmental Engineering, Water Resources and Water Structures
Journal Section Research Articles
Authors

Güleda Engin 0000-0002-3841-8440

Ahmet Adiller This is me 0000-0002-6701-4867

Philipp Klug This is me 0000-0003-4282-3315

Meltem Çelen 0000-0001-9487-497X

Frank Herrmann This is me 0000-0003-4939-0479

Heike Bach This is me 0000-0001-8060-2498

Frank Wendland This is me 0000-0001-6642-3311

Project Number Grant number: 244151
Publication Date March 31, 2021
Submission Date September 8, 2020
Acceptance Date January 13, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Engin, G., Adiller, A., Klug, P., Çelen, M., et al. (2021). Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. Environmental Research and Technology, 4(1), 1-17. https://doi.org/10.35208/ert.777323
AMA Engin G, Adiller A, Klug P, Çelen M, Herrmann F, Bach H, Wendland F. Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. ERT. March 2021;4(1):1-17. doi:10.35208/ert.777323
Chicago Engin, Güleda, Ahmet Adiller, Philipp Klug, Meltem Çelen, Frank Herrmann, Heike Bach, and Frank Wendland. “Climate Change Impact Assessment under Data Scarcity by Hydrological and Hydrodynamic Modeling in Izmit Bay/Turkey”. Environmental Research and Technology 4, no. 1 (March 2021): 1-17. https://doi.org/10.35208/ert.777323.
EndNote Engin G, Adiller A, Klug P, Çelen M, Herrmann F, Bach H, Wendland F (March 1, 2021) Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. Environmental Research and Technology 4 1 1–17.
IEEE G. Engin, “Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey”, ERT, vol. 4, no. 1, pp. 1–17, 2021, doi: 10.35208/ert.777323.
ISNAD Engin, Güleda et al. “Climate Change Impact Assessment under Data Scarcity by Hydrological and Hydrodynamic Modeling in Izmit Bay/Turkey”. Environmental Research and Technology 4/1 (March 2021), 1-17. https://doi.org/10.35208/ert.777323.
JAMA Engin G, Adiller A, Klug P, Çelen M, Herrmann F, Bach H, Wendland F. Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. ERT. 2021;4:1–17.
MLA Engin, Güleda et al. “Climate Change Impact Assessment under Data Scarcity by Hydrological and Hydrodynamic Modeling in Izmit Bay/Turkey”. Environmental Research and Technology, vol. 4, no. 1, 2021, pp. 1-17, doi:10.35208/ert.777323.
Vancouver Engin G, Adiller A, Klug P, Çelen M, Herrmann F, Bach H, Wendland F. Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. ERT. 2021;4(1):1-17.