Research Article
BibTex RIS Cite

Hemşirelikte Yapay Zeka Uygulamaları: Bir Bibliyometrik Analiz

Year 2025, Volume: 8 Issue: 3, 188 - 195, 29.09.2025
https://doi.org/10.62425/esbder.1624800

Abstract

Amaç: Bu bibliyometrik analiz, gelecekteki araştırmalara ışık tutmayı ve hemşirelikte yapay zekanın kullanımını daha geniş bir perspektiften inceleyerek yeni bir bakış açısı sunmayı amaçlamıştır.
Yöntemler: İlgili çalışmaları belirlemek için Web of Science veri tabanı kullanılmıştır. Yapay zeka, makine öğrenimi ve hemşirelik anahtar kelimelerini içeren çalışmalar (n: 32) dahil edilmiştir. Tarama sırasında İngilizce ve Türkçe dilleri filtrelenmiş ve yalnızca 2000 ile 2023 yılları arasında yayınlanan çalışmalar değerlendirilmiştir.
Bulgular: Yıllara göre 2019'da 5, 2020'de 7, 2021'de 6, 2022'de 6 ve 2023'te 5 çalışma yürütülmüştür. Çalışmanın konuları yönetim bilgi sistemleri, yoğun bakım ve onkolojidir. En üretken yazar Roschelle Fritz olarak belirlenmiştir. Journal of Management Nursing en fazla yayına sahip dergidir. Yapay zeka araştırmalarının çoğu Amerika Birleşik Devletleri'nde yürütülmüştür.
Sonuç: Son yıllardaki artışa rağmen, hemşirelikte yapay zeka uygulamalarına yönelik çalışmaların sınırlı olduğu görülmektedir. Sağlık hizmetlerindeki zorlukların üstesinden gelmek için kurumlar, yapay zekâ araştırmalarını desteklemeli ve hemşirelik eğitimine entegre etmelidir.

References

  • Akgerman, A., & Ozdemir Yavuz, E. (2022). Artificial intelligence and nursing. Journal of Artificial Intelligence in Health Sciences, 2(1), 21-27. https://doi.org/10.52309/jaihs.v2i1.36
  • Alp, F., Isbay, B., & Oner, O. (2023). Bibliometric analysis of graduate theses on the use of artificial intelligence methods in the field of healthcare (2015–2022). Gevher Nesibe Journal of Medical and Health Sciences, 8(1), 228–237. https://doi.org/10.5281/zenodo.7602783
  • Aria, M., & Cuccurullo, C. (2017) Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
  • Bilgili, N., & Erdal, A. (2023). Nurses' technology use skills and acquisition of technological competencies in the context of telemedicine applications/telenursing care. Y. Kitis (Ed.), Remote Care Services and Technological Opportunities to Ensure Continuity of Health Care. 1st edition., Ankara: Türkiye Klinikleri, p.72-8.
  • Buchanan, C., Howitt, M. L., Wilson, R., Booth, R. G., Risling, T., & Bamford, M. (2021). Predicted influences of artificial intelligence on nursing education: A scoping review. JMIR Nursing, 4(1), e23933. https://doi.org/10.2196/23933
  • Cetin, B., & Eroglu, N. (2020). The place of technology and innovation in nursing care. Acta Medica Nicomedia, 3, 1-10.
  • Clipper, B. (2020). The influence of the COVID-19 pandemic on technology: adoption in health care. Nurse Leader, 18(5), 500–503. https://doi.org/10.1016/j.mnl.2020.06.008
  • Coiera, E. (2003). Clinical decision support systems. Guide to Health Informatics, 2(1), 201-216.
  • Demirkol, D., Kocoglu, F.O., Aktas, S., & Erol, C. A. (2022). Bibliometric analysis of the relationship between diabetes and artificial intelligence. J Ist Faculty Medical, 85(2), 249-57. https://doi.org/10.26650/IUITFD.928111
  • Gaviria-Marin, M., Merigó, J. M., & Baier-Fuentes, H. (2019). Knowledge management: A global examination based on bibliometric analysis. Technological Forecasting and Social Change, 140, 194-220. https://doi.org/10.1016/j.techfore.2018.07.006
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., & Ma, S. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–43. https://doi.org/10.1136/svn-2017-000101
  • Kaynak, O. (2021). The golden age of artificial intelligence. Discover Artificial Intelligence, 1(1). https://doi.org/10.1007/s44163-021-00009-x
  • Maddox, T.M., Rumsfeld, J.S., & Payne, P.R.O. (2019). Questions for artificial intelligence in health care. JAMA, 321(1), 31–2. https://doi.org/10.1001/jama.2018.18932
  • Parlar, T., & Esen, F.S. (2023). A bibliometric analysis on the use of health informatics and artificial intelligence in the post-covid-19 period. Balkan and Near Eastern Journal of Social Sciences, 9(1), 75-83.
  • Reddy, S., Fox, J., & Purohit, M.P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medical, 112(1), 22–8. https://doi.org/10.1177/0141076818815510
  • Robert, N. (2019). How artificial intelligence is changing nursing. Nursing Management, 50(9), 30. https://doi.org/10.1097/01.numa.0000578988.56622.21
  • van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.

Artificial Intelligence Applications in Nursing: A Bibliometric Analysis

Year 2025, Volume: 8 Issue: 3, 188 - 195, 29.09.2025
https://doi.org/10.62425/esbder.1624800

Abstract

Objective: This bibliometric analysis aimed to shed light on future research and offer a new perspective by examining the use of artificial intelligence in nursing from a broader perspective.
Methods: The Web of Science database was used to identify the relevant studies. Studies containing the keywords "artificial intelligence", "machine learning" and "nursing" (n=32) were included. While scanning, only studies in English and Turkish were considered, and only studies published between 2000 and 2023 were evaluated.
Results: According to the publication years, 5 studies were conducted in 2019, 7 in 2020, 6 in 2021, 6 in 2022 and 5 in 2023. The main topics of the studies were management information systems, critical care, and oncology. Roschelle Fritz was identified as the most prolific author. The Journal of Nursing Management had the highest number of publications. Most artificial intelligence research in nursing has been conducted in the United States.
Conclusion: Despite the recent growth, studies on artificial intelligence applications in nursing remain limited. To address healthcare challenges, organizations should support artificial intelligence research and integrate it into nursing education to enhance innovation and improve patient care.

References

  • Akgerman, A., & Ozdemir Yavuz, E. (2022). Artificial intelligence and nursing. Journal of Artificial Intelligence in Health Sciences, 2(1), 21-27. https://doi.org/10.52309/jaihs.v2i1.36
  • Alp, F., Isbay, B., & Oner, O. (2023). Bibliometric analysis of graduate theses on the use of artificial intelligence methods in the field of healthcare (2015–2022). Gevher Nesibe Journal of Medical and Health Sciences, 8(1), 228–237. https://doi.org/10.5281/zenodo.7602783
  • Aria, M., & Cuccurullo, C. (2017) Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
  • Bilgili, N., & Erdal, A. (2023). Nurses' technology use skills and acquisition of technological competencies in the context of telemedicine applications/telenursing care. Y. Kitis (Ed.), Remote Care Services and Technological Opportunities to Ensure Continuity of Health Care. 1st edition., Ankara: Türkiye Klinikleri, p.72-8.
  • Buchanan, C., Howitt, M. L., Wilson, R., Booth, R. G., Risling, T., & Bamford, M. (2021). Predicted influences of artificial intelligence on nursing education: A scoping review. JMIR Nursing, 4(1), e23933. https://doi.org/10.2196/23933
  • Cetin, B., & Eroglu, N. (2020). The place of technology and innovation in nursing care. Acta Medica Nicomedia, 3, 1-10.
  • Clipper, B. (2020). The influence of the COVID-19 pandemic on technology: adoption in health care. Nurse Leader, 18(5), 500–503. https://doi.org/10.1016/j.mnl.2020.06.008
  • Coiera, E. (2003). Clinical decision support systems. Guide to Health Informatics, 2(1), 201-216.
  • Demirkol, D., Kocoglu, F.O., Aktas, S., & Erol, C. A. (2022). Bibliometric analysis of the relationship between diabetes and artificial intelligence. J Ist Faculty Medical, 85(2), 249-57. https://doi.org/10.26650/IUITFD.928111
  • Gaviria-Marin, M., Merigó, J. M., & Baier-Fuentes, H. (2019). Knowledge management: A global examination based on bibliometric analysis. Technological Forecasting and Social Change, 140, 194-220. https://doi.org/10.1016/j.techfore.2018.07.006
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., & Ma, S. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–43. https://doi.org/10.1136/svn-2017-000101
  • Kaynak, O. (2021). The golden age of artificial intelligence. Discover Artificial Intelligence, 1(1). https://doi.org/10.1007/s44163-021-00009-x
  • Maddox, T.M., Rumsfeld, J.S., & Payne, P.R.O. (2019). Questions for artificial intelligence in health care. JAMA, 321(1), 31–2. https://doi.org/10.1001/jama.2018.18932
  • Parlar, T., & Esen, F.S. (2023). A bibliometric analysis on the use of health informatics and artificial intelligence in the post-covid-19 period. Balkan and Near Eastern Journal of Social Sciences, 9(1), 75-83.
  • Reddy, S., Fox, J., & Purohit, M.P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medical, 112(1), 22–8. https://doi.org/10.1177/0141076818815510
  • Robert, N. (2019). How artificial intelligence is changing nursing. Nursing Management, 50(9), 30. https://doi.org/10.1097/01.numa.0000578988.56622.21
  • van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
There are 17 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section Articles
Authors

Nurdan Yalçın Atar 0000-0002-6318-3882

Öznur Tuğba Çelebi Dursun 0000-0002-8228-4443

Publication Date September 29, 2025
Submission Date January 22, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Yalçın Atar, N., & Çelebi Dursun, Ö. T. (2025). Artificial Intelligence Applications in Nursing: A Bibliometric Analysis. Journal of Midwifery and Health Sciences, 8(3), 188-195. https://doi.org/10.62425/esbder.1624800
AMA Yalçın Atar N, Çelebi Dursun ÖT. Artificial Intelligence Applications in Nursing: A Bibliometric Analysis. Journal of Midwifery and Health Sciences. September 2025;8(3):188-195. doi:10.62425/esbder.1624800
Chicago Yalçın Atar, Nurdan, and Öznur Tuğba Çelebi Dursun. “Artificial Intelligence Applications in Nursing: A Bibliometric Analysis”. Journal of Midwifery and Health Sciences 8, no. 3 (September 2025): 188-95. https://doi.org/10.62425/esbder.1624800.
EndNote Yalçın Atar N, Çelebi Dursun ÖT (September 1, 2025) Artificial Intelligence Applications in Nursing: A Bibliometric Analysis. Journal of Midwifery and Health Sciences 8 3 188–195.
IEEE N. Yalçın Atar and Ö. T. Çelebi Dursun, “Artificial Intelligence Applications in Nursing: A Bibliometric Analysis”, Journal of Midwifery and Health Sciences, vol. 8, no. 3, pp. 188–195, 2025, doi: 10.62425/esbder.1624800.
ISNAD Yalçın Atar, Nurdan - Çelebi Dursun, Öznur Tuğba. “Artificial Intelligence Applications in Nursing: A Bibliometric Analysis”. Journal of Midwifery and Health Sciences 8/3 (September2025), 188-195. https://doi.org/10.62425/esbder.1624800.
JAMA Yalçın Atar N, Çelebi Dursun ÖT. Artificial Intelligence Applications in Nursing: A Bibliometric Analysis. Journal of Midwifery and Health Sciences. 2025;8:188–195.
MLA Yalçın Atar, Nurdan and Öznur Tuğba Çelebi Dursun. “Artificial Intelligence Applications in Nursing: A Bibliometric Analysis”. Journal of Midwifery and Health Sciences, vol. 8, no. 3, 2025, pp. 188-95, doi:10.62425/esbder.1624800.
Vancouver Yalçın Atar N, Çelebi Dursun ÖT. Artificial Intelligence Applications in Nursing: A Bibliometric Analysis. Journal of Midwifery and Health Sciences. 2025;8(3):188-95.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2992931409