Research Article
BibTex RIS Cite

HİDROTERMAL KARBON İÇERİĞİNİN POLİETİLEN MATRİSLİ KOMPOZİTLERİN AŞINMA ÖZELLİKLERİNE ETKİSİ

Year 2022, , 207 - 215, 27.09.2022
https://doi.org/10.18038/estubtda.1038059

Abstract

Karbon nanotüpler veya grafen nanoplateletler gibi yaygın olarak kullanılan karbon bazlı malzemelerle karşılaştırıldığında, hidrotermal karbonlar (HTC) çevre dostu yaklaşımlarla daha düşük bir maliyetlerle elde edilirler. HTC, piller, manyetik malzemeler, süper kapasitörler, adsorban malzemeler vb. gibi geniş bir uygulama alanı olmasına rağmen, HTC takviye malzemesi olarak kompozitlerde kullanımına ilişkin az sayıda çalışma bulunmaktadır. Bu çalışmada, enjeksiyon kalıplama yöntemi ile ağırlıkça farklı miktarlarda (%0.5, %1, %2) HTC içeren polietilen matrisli kompozitler üretilmiştir. HTC içeriğinin polietilen matrisli kompozitlerin aşınma özellikleri üzerindeki etkisi araştırılmıştır. Kuru kayma koşullarında farklı yükler uygulanarak aşınma testleri gerçekleştirilmiştir. Aşınma sonuçlarını yorumlayabilmek adına numunelerin mekanik özellikleri çekme ve darbe testleri ile belirlenmiştir. Ayrıca, HTC ilavesinin kompozitlerin yapısal ve termal özellikleri üzerindeki etkisini anlamak için FTIR ve DTA analizleri yapılmıştır. Sonuçlar, düşük takviye oranlarında HTC eklenmesinin, polietilenin mekanik ve tribolojik özelliklerinin geliştirilmesini sağladığını göstermektedir. Böylece, hidrotermal karbonun polimer matrisli kompozitler için alternatif bir karbon bazlı takviye malzemesi olabileceği söylenebilmektedir.

References

  • [1] Liu T, Wood W, Li B, et al. Effect of reinforcement on wear debris of carbon nanofiber/high density polyethylene composites: Morphological study and quantitative analysis. Wear 2012; 294: 326–335.
  • [2] Goodman S, Lidgren L. Polyethylene wear in knee arthroplasty: a review. Acta Orthopaedica Scandinavica 1992; 63: 358–364.
  • [3] Liu T, Li B, Lively B, et al. Enhanced wear resistance of high-density polyethylene composites reinforced by organosilane-graphitic nanoplatelets. Wear 2014; 309: 43–51.
  • [4] Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008; 321: 385–388.
  • [5] Akgul Y, Ahlatci H, Turan ME, et al. Influence of carbon fiber content on bio-tribological performances of high-density polyethylene. Materials Research Express 2019; 6: 125307.
  • [6] Johnson BB, Santare MH, Novotny JE, et al. Wear behavior of carbon nanotube/high density polyethylene composites. Mechanics of Materials 2009; 41: 1108–1115.
  • [7] Fouad H, Elleithy R. High density polyethylene/graphite nano-composites for total hip joint replacements: Processing and in vitro characterization. Journal of the mechanical behavior of biomedical materials 2011; 4: 1376–1383.
  • [8] McNally T, Pötschke P, Halley P, et al. Polyethylene multiwalled carbon nanotube composites. Polymer 2005; 46: 8222–8232.
  • [9] Bourque AJ, Locker CR, Tsou AH, et al. Nucleation and mechanical enhancements in polyethylene-graphene nanoplate composites. Polymer 2016; 99: 263-272.
  • [10] Simsir H, Akgul Y, Erden MA. Hydrothermal carbon effect on iron matrix composites produced by powder metallurgy. Materials Chemistry and Physics 2020; 242: 122557.
  • [11] Arsun O, Akgul Y, Simsir H. Investigation of the properties of Al7075-HTC composites produced by powder metallurgy. Journal of Composite Materials 2021; 0021998321990877.
  • [12] Simsir H, Eltugral N, Karagoz S. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresource technology 2017; 246: 82–87.
  • [13] Simsir H, Eltugral N, Karagoz S. Effects of acidic and alkaline metal triflates on the hydrothermal carbonization of glucose and cellulose. Energy & Fuels 2019; 33: 7473–7479.
  • [14] Simsir H, Eltugral N, Karagoz S. The role of capping agents in the fabrication of nano-silver-decorated hydrothermal carbons. Journal of Environmental Chemical Engineering 2019; 7: 103415.
  • [15] Simsir H, Eltugral N, Frohnhoven R, et al. Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries. MRS Communications 2018; 8: 610–616.
  • [16] Siddiqui MTH, Nizamuddin S, Baloch HA, et al. Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environmental Chemistry Letters 2018; 16: 821–844.
  • [17] Wei L, Sevilla M, Fuertes AB, et al. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Advanced Energy Materials 2011; 1: 356–361.
  • [18] Sharma VT, Kamath SV, Mondal D, et al. Fe–Al based nanocomposite reinforced hydrothermal carbon: Efficient and robust absorbent for anionic dyes. Chemosphere 2020; 259: 127421.
  • [19] Polat S, Avcı A, Ekrem M. Fatigue behavior of composite to aluminum single lap joints reinforced with graphene doped nylon 66 nanofibers. Composite Structures 2018; 194: 624–632.
  • [20] Polat S, Sun Y, Çevik E, et al. Investigation of wear and corrosion behavior of graphene nanoplatelet-coated B4C reinforced Al–Si matrix semi-ceramic hybrid composites. Journal of Composite Materials 2019; 53: 3549–3565.
  • [21] De Geyter N, Morent R, Leys C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 2008; 40: 608–611.
  • [22] Thongruang W, Balik CM, Spontak RJ. Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. Journal of Polymer Science Part B: Polymer Physics 2002; 40: 1013–1025.
  • [23] Hu C, Liao X, Qin Q-H, et al. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers. Composites Part A: Applied Science and Manufacturing 2019; 121: 149–156.
  • [24] Akgul Y, Ahlatci H, Turan ME, et al. Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites. Polymer Composites 2020.
  • [25] Erden MA, Akgul Y, Kayabas O, et al. Mechanical Properties of Graphene-Nanoparticle and Carbon-Nanotube-Reinforced PE-Matrix Nanocomposites. Materiali in Tehnologije 2019; 53: 785–789.
  • [26] Turan ME, Sun Y, Akgul Y. Improved wear properties of magnesium matrix composite with the addition of fullerene using semi powder metallurgy. Fullerenes, Nanotubes and Carbon Nanostructures 2018; 26: 130–136.
  • [27] Yetgin S, Çolak M. Grafit katkılı polipropilen kompozitlerin mekanik ve tribolojik özelliklerinin incelenmesi. El-Cezeri Journal of Science and Engineering 2020; 7: 649–658.

EFFECT OF HYDROTHERMAL CARBONS CONTENT ON WEAR PROPERTIES OF POLYETHYLENE MATRIX COMPOSITES

Year 2022, , 207 - 215, 27.09.2022
https://doi.org/10.18038/estubtda.1038059

Abstract

Compared to commonly use carbonaceous materials such as carbon nanotubes or graphene nanoplatelets, hydrothermal carbons (HTCs) are obtained with environmentally friendly approaches at a lower cost. Although HTCs have a wide application area such as batteries, magnetic materials, supercapacitors, adsorbent materials, etc., there are few studies on the usage of HTC as reinforcement material for composites. In this study, polyethylene matrix composites containing different amounts (0.5 wt.%, 1 wt.%, 2 wt.%) of HTCs were fabricated via the injection molding process. The effect of HTCs content on the wear properties of polyethylene matrix composites was investigated. Reciprocating wear tests were performed applying different loads at dry sliding conditions. To correlate with wear results, the mechanical properties of samples were determined by tensile and impact tests. Also, FTIR and DTA analyzes were conducted to understand the effect of HTCs on the structural and thermal properties of composites. Results show that the addition of HTCs led to the enhancement of mechanical and tribological properties of polyethylene at lower amount reinforcement ratios. Thus, it can be said that HTCs could be alternative carbonaceous reinforcement material for polymer matrix composites.

References

  • [1] Liu T, Wood W, Li B, et al. Effect of reinforcement on wear debris of carbon nanofiber/high density polyethylene composites: Morphological study and quantitative analysis. Wear 2012; 294: 326–335.
  • [2] Goodman S, Lidgren L. Polyethylene wear in knee arthroplasty: a review. Acta Orthopaedica Scandinavica 1992; 63: 358–364.
  • [3] Liu T, Li B, Lively B, et al. Enhanced wear resistance of high-density polyethylene composites reinforced by organosilane-graphitic nanoplatelets. Wear 2014; 309: 43–51.
  • [4] Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008; 321: 385–388.
  • [5] Akgul Y, Ahlatci H, Turan ME, et al. Influence of carbon fiber content on bio-tribological performances of high-density polyethylene. Materials Research Express 2019; 6: 125307.
  • [6] Johnson BB, Santare MH, Novotny JE, et al. Wear behavior of carbon nanotube/high density polyethylene composites. Mechanics of Materials 2009; 41: 1108–1115.
  • [7] Fouad H, Elleithy R. High density polyethylene/graphite nano-composites for total hip joint replacements: Processing and in vitro characterization. Journal of the mechanical behavior of biomedical materials 2011; 4: 1376–1383.
  • [8] McNally T, Pötschke P, Halley P, et al. Polyethylene multiwalled carbon nanotube composites. Polymer 2005; 46: 8222–8232.
  • [9] Bourque AJ, Locker CR, Tsou AH, et al. Nucleation and mechanical enhancements in polyethylene-graphene nanoplate composites. Polymer 2016; 99: 263-272.
  • [10] Simsir H, Akgul Y, Erden MA. Hydrothermal carbon effect on iron matrix composites produced by powder metallurgy. Materials Chemistry and Physics 2020; 242: 122557.
  • [11] Arsun O, Akgul Y, Simsir H. Investigation of the properties of Al7075-HTC composites produced by powder metallurgy. Journal of Composite Materials 2021; 0021998321990877.
  • [12] Simsir H, Eltugral N, Karagoz S. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresource technology 2017; 246: 82–87.
  • [13] Simsir H, Eltugral N, Karagoz S. Effects of acidic and alkaline metal triflates on the hydrothermal carbonization of glucose and cellulose. Energy & Fuels 2019; 33: 7473–7479.
  • [14] Simsir H, Eltugral N, Karagoz S. The role of capping agents in the fabrication of nano-silver-decorated hydrothermal carbons. Journal of Environmental Chemical Engineering 2019; 7: 103415.
  • [15] Simsir H, Eltugral N, Frohnhoven R, et al. Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries. MRS Communications 2018; 8: 610–616.
  • [16] Siddiqui MTH, Nizamuddin S, Baloch HA, et al. Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environmental Chemistry Letters 2018; 16: 821–844.
  • [17] Wei L, Sevilla M, Fuertes AB, et al. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Advanced Energy Materials 2011; 1: 356–361.
  • [18] Sharma VT, Kamath SV, Mondal D, et al. Fe–Al based nanocomposite reinforced hydrothermal carbon: Efficient and robust absorbent for anionic dyes. Chemosphere 2020; 259: 127421.
  • [19] Polat S, Avcı A, Ekrem M. Fatigue behavior of composite to aluminum single lap joints reinforced with graphene doped nylon 66 nanofibers. Composite Structures 2018; 194: 624–632.
  • [20] Polat S, Sun Y, Çevik E, et al. Investigation of wear and corrosion behavior of graphene nanoplatelet-coated B4C reinforced Al–Si matrix semi-ceramic hybrid composites. Journal of Composite Materials 2019; 53: 3549–3565.
  • [21] De Geyter N, Morent R, Leys C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 2008; 40: 608–611.
  • [22] Thongruang W, Balik CM, Spontak RJ. Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. Journal of Polymer Science Part B: Polymer Physics 2002; 40: 1013–1025.
  • [23] Hu C, Liao X, Qin Q-H, et al. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers. Composites Part A: Applied Science and Manufacturing 2019; 121: 149–156.
  • [24] Akgul Y, Ahlatci H, Turan ME, et al. Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites. Polymer Composites 2020.
  • [25] Erden MA, Akgul Y, Kayabas O, et al. Mechanical Properties of Graphene-Nanoparticle and Carbon-Nanotube-Reinforced PE-Matrix Nanocomposites. Materiali in Tehnologije 2019; 53: 785–789.
  • [26] Turan ME, Sun Y, Akgul Y. Improved wear properties of magnesium matrix composite with the addition of fullerene using semi powder metallurgy. Fullerenes, Nanotubes and Carbon Nanostructures 2018; 26: 130–136.
  • [27] Yetgin S, Çolak M. Grafit katkılı polipropilen kompozitlerin mekanik ve tribolojik özelliklerinin incelenmesi. El-Cezeri Journal of Science and Engineering 2020; 7: 649–658.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasin Akgül 0000-0001-5643-5968

Publication Date September 27, 2022
Published in Issue Year 2022

Cite

AMA Akgül Y. EFFECT OF HYDROTHERMAL CARBONS CONTENT ON WEAR PROPERTIES OF POLYETHYLENE MATRIX COMPOSITES. Estuscience - Se. September 2022;23(3):207-215. doi:10.18038/estubtda.1038059