Research Article
BibTex RIS Cite
Year 2020, , 86 - 96, 31.03.2020
https://doi.org/10.18038/estubtda.559144

Abstract

References

  • [1] Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources opportunities and challenges in the green materials world. J Polym Environ 2002; 10(1-2): 19-26.
  • [2] Andreopoulos AG, Theophanides T. Degradable plastics: A smart approach to various applications. J Elastom Plastics 1994; 26(4): 308-326.
  • [3] Bismarck A, Baltazar A, Jimenez Y, Sarikakis K. Green composites as panacea? Socio-economic aspects of green materials. Environ Dev Sustain 2006; 8(3): 445-463.
  • [4] Tayfun U. Influence of surface treatment of fillers on the mechanical properties of thermoplastic polyurethane composites. PhD, Middle East Technical University, Ankara, Turkey, 2015.
  • [5] Bajpai PK, Singh I, Madaan J. Development and characterization of PLA-based green composites: A review. J Thermoplast Compos Mater 2012; 27: 52-81.
  • [6] Weber CJ, Haugaard V, Festersen R, Bertelsen G. Production and applications of biobased packaging materials for the food industry. Food Addit Contam 2002; 19: 172-177.
  • [7] Murariu M, Dubois P. PLA composites: From production to properties. Adv Drug Deliv Rev 2016; 107: 17-46.
  • [8] Eselini N, Tirkes S, Akar AO, Tayfun U. Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. J Elastom Plast 2019; DOI: 10.1177/0095244319884716
  • [9] Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Prog Polym Sci 2010; 35: 338-356.
  • [10] Ren J. Biodegradable Poly (lactic acid): Synthesis, Modification, Processing and Applications. Springer: Verlag, 2011.
  • [11] Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Mater Res Express 2020; 7: 015301.
  • [12] Theberge JE. Mineral reinforced thermoplastic composites. J Elastom Plast 1982; 14(2): 100-108.
  • [13] Xanthos M. Functional Fillers for Plastics. Weinheim, Wiley VCH, 2005.
  • [14] Fu S, Feng X, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng 2008; 39: 933-961.
  • [15] Oktem GA, Tincer T. Preparation and characterization of perlite-filled high- density polyethylenes: 1. Mechanical Properties. J Appl Polym Sci 1994; 54: 1103-1114.
  • [16] Metin D, Tihminhoglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A Appl Sci Manuf 2004; 35(1): 23-32.
  • [17] Kanbur Y, Tayfun U. Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites. Sakarya Univ J Sci 2018; 22(2): 333-339.
  • [18] Klein C, Hurlbut CS. Manual of Mineralogy. 21st ed. USA: Wiley, 1998.
  • [19] Esenli F, Sans BE. XRD studies of opals (4 Å peak) in bentonites from Turkey: Implications for the origin of bentonites. J Min Geochem 2013; 191(1): 45-53.
  • [20] Bulut G, Chimeddorj M, Esenli F, Çelik MS. Production of desiccants from Turkish bentonites. Appl Clay Sci 2009; 46: 141–147.
  • [21] De Oliveira SV, Araújo EM, Pereira CMC, Leite AMD. Polyethylene/bentonite clay nanocomposite with flame retardant properties. Polimeros 2017; 27: 91-98.
  • [22] Seyidoglu T, Yilmazer U. Use of purified and modified bentonites in linear low-density polyethylene/organoclay/compatibilizer nanocomposites. J Appl Polym Sci 2012; 124(3): 2430-2440.
  • [23] Durmus A, Woo M, Kasgoz A, Macosko CW, Tsapatsis M. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. Eur Polym J 2007; 43(9): 3737-3749.
  • [24] Kraus E, Nguen D-A, Efimova A, Starostina I, Stoyanov O. Acid-base properties of polyethylene composites with clays. J Appl Polym Sci 2016; 133(30): 43629.
  • [25] Liborio P, Oliveira VA, Marques MFV. New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation. Appl Clay Sci 2015; 111: 44-49.
  • [26] Seyidoglu T, Yilmazer U. Modification and characterization of bentonite with quaternary ammonium and phosphonium salts and its use in polypropylene nanocomposites. J Thermoplast Compos Mater 2015; 28: 86-110.
  • [27] Yurddaskal M, Celik E. Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos Struct 2018; 183(1): 381-388.
  • [28] Kausar A, Haider S, Muhammad B. Nanocomposite based on polystyrene/polyamide blend and bentonite: morphology, thermal, and nonflammability properties. Nanomater Nanotechno 2017; 7: 1-14.
  • [29] Hacioglu F. Degradation of polycarbonate, bentonite, barite, carbon fiber and glass fiber filled polycarbonate via gamma irradiation and possible use of polycarbonate in radioactive waste management. PhD, Middle East Technical University, Ankara, Turkey, 2017.
  • [30] Guven O, Karakas F, Kaya MA, Yildirim H, Celik MS. Composite films based on styrene-co-butyl-acrylate with colemanite and calcium bentonite mineral fıllers. Mech Compos Mater 2014; 50(3): 335-342.
  • [31] Shokoohi S, Arefazar A, Khosrokhavar R. Silane coupling agents in polymer-based reinforced composites: A review. J Reinf Plast Compos 2008; 27(5): 473-485.
  • [32] Hatipoglu A, Dike AS. Effects of concentration and surface silanization of barite on the mechanical and physical properties of poly (lactic acid)/barite composites. Polym Polym Compos 2020; 28(2): 140-148.
  • [33] Yang R, Liu Y, Wang K, Yu J. Characterization of surface interaction of inorganic fillers with silane coupling agents. J Anal Appl Pyrol 2003; 70(2): 413-425.
  • [34] Rice SB, Freund H, Clouse JA, Fleissner TG, Isaacs CM. Application of fourier transform infrared spectroscopy to silica diagenesis: the opal-A to opal-CT transformation. J Sediment Res 1995; 65: 639 - 647.
  • [35] Dogan SD, Tayfun U, Dogan M. New route for modifying cellulosic fibers with fatty acids and its application to polyethylene/jute fiber composites. J Compos Mater 2016; 50(18): 2475-2485.
  • [36] Silverstein R, Webster F. Spectrometric identification of organic compounds. New York, NY, USA: Wiley, 2006.
  • [37] Bouchet J, Pax GM, Leterrier Y, et al. Formation of aminosilane-oxide interphases. Compos Interface 2006; 13(7): 573-588.
  • [38] Ozdemir E, Hacaloglu J. Characterization of polymer/nanoclay composites via direct pyrolysis mass spectrometry. J Anal Appl Pyrol 2018; 134: 395-404.
  • [39] Tayfun U, Dogan M. Improvement the dyeability of poly(lactic acid) fiber using organoclay during melt spinning. Polym Bull 2016; 73(6):1581-1593.
  • [40] Donnet JB. Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 2013; 63: 1085-1088.
  • [41] Dike AS, Yilmazer U. Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers. Mater Res Express 2020; 7: 015055 . [42] Tayfun U, Dogan M, Bayramli E. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastics. Anadolu Univ J Sci Technol A Appl Sci Eng 2017; 18(3): 682-694.
  • [43] Tian HY, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. J Mater Sci 2007; 42: 3244-3250.
  • [44] Dike AS. Nanocomposites based on blends of polystyrene. PhD, Middle East Technical University, Ankara, Turkey, 2011.
  • [45] Ge C, Ding P, Shi L, Fu J. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites, J Polym Sci B Polym Phys 2009; 47: 655-668.
  • [46] Tayfun U, Dogan M, Bayramli E. Investigations of the flax fiber/thermoplastic polyurethane eco-composites: Influence of isocyanate modification of flax fiber surface. Polym Compos 2017; 38(12): 2874-2880.
  • [47] Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 2005; 65(10): 1582-1592.

USE OF TURKISH BENTONITE MINERAL AS AN ADDITIVE FOR POLY(LACTIC ACID) BASED BIO-COMPOSITE MATERIALS

Year 2020, , 86 - 96, 31.03.2020
https://doi.org/10.18038/estubtda.559144

Abstract




In this study, Turkish bentonite (BN)
mineral is subjected to silane treatment in order to enhance its compatibility for poly(lactic acid) (PLA). Neat and
surface silanized BN powders are compounded with PLA using melt blending
process at the concentrations of 5, 10, 15 and 20 wt%. Surface characteristics
of BN samples are examined by infrared spectroscopy. Mechanical,
thermo-mechanical, water resistance, melt flow and morphological investigations
of composites are performed by tensile and impact tests, dynamic mechanical
analysis (DMA), water absorption test, melt flow rate test (MFR) and scanning
electron microscopy (SEM) analysis, respectively. Mechanical test results show
that BN additions lead to increase in tensile strength and modulus of PLA. The
maximum improvement is obtained for 15 wt% of silanized BN containing
composite. Silanized BN filled PLA displays higher impact performance compared
to untreated BN sample. Impact energy values of composites increase with
increase in loading ratio. Silanized BN containing composite with 20 wt% concentration
gives the highest storage modulus according to the DMA study. Glass transition
temperature of PLA is improved by the inclusions of all BN samples. Additions
of BN make slight decreases on MFR value of PLA. However, these reductions are
found to be negligible in terms of its effect on processing of material. Water
uptakes of composites are found to be higher than that of PLA. Composites
containing silanized BN have lower water absorption values than neat BN samples
due to the hydrophobicity of silicon containing surface. SEM characterization
reveals that more homogeneous dispersion in PLA matrix is observed for silane
treated BN compared to neat BN particles thanks to improvement of interfacial
adhesion between BN and PLA matrix.



References

  • [1] Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources opportunities and challenges in the green materials world. J Polym Environ 2002; 10(1-2): 19-26.
  • [2] Andreopoulos AG, Theophanides T. Degradable plastics: A smart approach to various applications. J Elastom Plastics 1994; 26(4): 308-326.
  • [3] Bismarck A, Baltazar A, Jimenez Y, Sarikakis K. Green composites as panacea? Socio-economic aspects of green materials. Environ Dev Sustain 2006; 8(3): 445-463.
  • [4] Tayfun U. Influence of surface treatment of fillers on the mechanical properties of thermoplastic polyurethane composites. PhD, Middle East Technical University, Ankara, Turkey, 2015.
  • [5] Bajpai PK, Singh I, Madaan J. Development and characterization of PLA-based green composites: A review. J Thermoplast Compos Mater 2012; 27: 52-81.
  • [6] Weber CJ, Haugaard V, Festersen R, Bertelsen G. Production and applications of biobased packaging materials for the food industry. Food Addit Contam 2002; 19: 172-177.
  • [7] Murariu M, Dubois P. PLA composites: From production to properties. Adv Drug Deliv Rev 2016; 107: 17-46.
  • [8] Eselini N, Tirkes S, Akar AO, Tayfun U. Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. J Elastom Plast 2019; DOI: 10.1177/0095244319884716
  • [9] Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Prog Polym Sci 2010; 35: 338-356.
  • [10] Ren J. Biodegradable Poly (lactic acid): Synthesis, Modification, Processing and Applications. Springer: Verlag, 2011.
  • [11] Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Mater Res Express 2020; 7: 015301.
  • [12] Theberge JE. Mineral reinforced thermoplastic composites. J Elastom Plast 1982; 14(2): 100-108.
  • [13] Xanthos M. Functional Fillers for Plastics. Weinheim, Wiley VCH, 2005.
  • [14] Fu S, Feng X, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng 2008; 39: 933-961.
  • [15] Oktem GA, Tincer T. Preparation and characterization of perlite-filled high- density polyethylenes: 1. Mechanical Properties. J Appl Polym Sci 1994; 54: 1103-1114.
  • [16] Metin D, Tihminhoglu F, Balkose D, Ulku S. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A Appl Sci Manuf 2004; 35(1): 23-32.
  • [17] Kanbur Y, Tayfun U. Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites. Sakarya Univ J Sci 2018; 22(2): 333-339.
  • [18] Klein C, Hurlbut CS. Manual of Mineralogy. 21st ed. USA: Wiley, 1998.
  • [19] Esenli F, Sans BE. XRD studies of opals (4 Å peak) in bentonites from Turkey: Implications for the origin of bentonites. J Min Geochem 2013; 191(1): 45-53.
  • [20] Bulut G, Chimeddorj M, Esenli F, Çelik MS. Production of desiccants from Turkish bentonites. Appl Clay Sci 2009; 46: 141–147.
  • [21] De Oliveira SV, Araújo EM, Pereira CMC, Leite AMD. Polyethylene/bentonite clay nanocomposite with flame retardant properties. Polimeros 2017; 27: 91-98.
  • [22] Seyidoglu T, Yilmazer U. Use of purified and modified bentonites in linear low-density polyethylene/organoclay/compatibilizer nanocomposites. J Appl Polym Sci 2012; 124(3): 2430-2440.
  • [23] Durmus A, Woo M, Kasgoz A, Macosko CW, Tsapatsis M. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. Eur Polym J 2007; 43(9): 3737-3749.
  • [24] Kraus E, Nguen D-A, Efimova A, Starostina I, Stoyanov O. Acid-base properties of polyethylene composites with clays. J Appl Polym Sci 2016; 133(30): 43629.
  • [25] Liborio P, Oliveira VA, Marques MFV. New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation. Appl Clay Sci 2015; 111: 44-49.
  • [26] Seyidoglu T, Yilmazer U. Modification and characterization of bentonite with quaternary ammonium and phosphonium salts and its use in polypropylene nanocomposites. J Thermoplast Compos Mater 2015; 28: 86-110.
  • [27] Yurddaskal M, Celik E. Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos Struct 2018; 183(1): 381-388.
  • [28] Kausar A, Haider S, Muhammad B. Nanocomposite based on polystyrene/polyamide blend and bentonite: morphology, thermal, and nonflammability properties. Nanomater Nanotechno 2017; 7: 1-14.
  • [29] Hacioglu F. Degradation of polycarbonate, bentonite, barite, carbon fiber and glass fiber filled polycarbonate via gamma irradiation and possible use of polycarbonate in radioactive waste management. PhD, Middle East Technical University, Ankara, Turkey, 2017.
  • [30] Guven O, Karakas F, Kaya MA, Yildirim H, Celik MS. Composite films based on styrene-co-butyl-acrylate with colemanite and calcium bentonite mineral fıllers. Mech Compos Mater 2014; 50(3): 335-342.
  • [31] Shokoohi S, Arefazar A, Khosrokhavar R. Silane coupling agents in polymer-based reinforced composites: A review. J Reinf Plast Compos 2008; 27(5): 473-485.
  • [32] Hatipoglu A, Dike AS. Effects of concentration and surface silanization of barite on the mechanical and physical properties of poly (lactic acid)/barite composites. Polym Polym Compos 2020; 28(2): 140-148.
  • [33] Yang R, Liu Y, Wang K, Yu J. Characterization of surface interaction of inorganic fillers with silane coupling agents. J Anal Appl Pyrol 2003; 70(2): 413-425.
  • [34] Rice SB, Freund H, Clouse JA, Fleissner TG, Isaacs CM. Application of fourier transform infrared spectroscopy to silica diagenesis: the opal-A to opal-CT transformation. J Sediment Res 1995; 65: 639 - 647.
  • [35] Dogan SD, Tayfun U, Dogan M. New route for modifying cellulosic fibers with fatty acids and its application to polyethylene/jute fiber composites. J Compos Mater 2016; 50(18): 2475-2485.
  • [36] Silverstein R, Webster F. Spectrometric identification of organic compounds. New York, NY, USA: Wiley, 2006.
  • [37] Bouchet J, Pax GM, Leterrier Y, et al. Formation of aminosilane-oxide interphases. Compos Interface 2006; 13(7): 573-588.
  • [38] Ozdemir E, Hacaloglu J. Characterization of polymer/nanoclay composites via direct pyrolysis mass spectrometry. J Anal Appl Pyrol 2018; 134: 395-404.
  • [39] Tayfun U, Dogan M. Improvement the dyeability of poly(lactic acid) fiber using organoclay during melt spinning. Polym Bull 2016; 73(6):1581-1593.
  • [40] Donnet JB. Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 2013; 63: 1085-1088.
  • [41] Dike AS, Yilmazer U. Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers. Mater Res Express 2020; 7: 015055 . [42] Tayfun U, Dogan M, Bayramli E. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastics. Anadolu Univ J Sci Technol A Appl Sci Eng 2017; 18(3): 682-694.
  • [43] Tian HY, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. J Mater Sci 2007; 42: 3244-3250.
  • [44] Dike AS. Nanocomposites based on blends of polystyrene. PhD, Middle East Technical University, Ankara, Turkey, 2011.
  • [45] Ge C, Ding P, Shi L, Fu J. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites, J Polym Sci B Polym Phys 2009; 47: 655-668.
  • [46] Tayfun U, Dogan M, Bayramli E. Investigations of the flax fiber/thermoplastic polyurethane eco-composites: Influence of isocyanate modification of flax fiber surface. Polym Compos 2017; 38(12): 2874-2880.
  • [47] Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 2005; 65(10): 1582-1592.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Sinan Dike 0000-0001-6214-6070

Publication Date March 31, 2020
Published in Issue Year 2020

Cite

AMA Dike AS. USE OF TURKISH BENTONITE MINERAL AS AN ADDITIVE FOR POLY(LACTIC ACID) BASED BIO-COMPOSITE MATERIALS. Estuscience - Se. March 2020;21(1):86-96. doi:10.18038/estubtda.559144