Research Article
BibTex RIS Cite

THERMOPHILIC PROKARYOTIC DIVERSITY OF EYNAL GEOTHERMAL SPRING AND PROTEASE PRODUCTION POTENTIALS OF ISOLATES

Year 2020, , 436 - 445, 30.09.2020
https://doi.org/10.18038/estubtda.635789

Abstract

Thermophilic microorganisms are quite attractive for the study of biodiversity and evolutionary process as well as biotechnological applications. These organisms provide significant advantages for industrial and biotechnological processes occurring fast and efficiently at high temperatures. Possible potential also is getting increase thanks to isolation of new strains, determination of new metabolites and their pathway.

Within the scope of this study, thermophilic bacterial community was investigated with a combination of classical microbiology and molecular biology approaches including fluorescent in situ hybridization, amplified ribosomal DNA restriction analysis, and polymerase chain reaction of 16S rRNA gene. Archaea and Bacteria domain were screened by Fluorescence in situ Hybridization technique. At the end of culture-dependent methodology, Paenibacillus lactis E3.1 (MK573857), Brevibacillus borstelensis E3.2 (MK573871), Paenibacillus naphthalenovorans E2.2 (MK573627), Paenibacillus sp. E3.5 (MK573870) were obtained. Furthermore, these isolates were screened with regards to protease production capabilities. At the end of screening studies, the highest protease activity (300 U/mg) was observed for Paenibacillus lactis E3.1.

Thanks

This study is based partly on the M.Sc. thesis of O. ERDONMEZ. Belma NURAL YAMAN is supported by TUBITAK-BIDEB 2228-B National Scholarship Program for PhD Students.

References

  • 1. Nural Yaman B, Mutlu M B, Aytar Çelik P, Çabuk A, Metagenomics (16S amplicon sequencing) and DGGE analysis of bacterial diversity of acid mine drainage, J Microbiol Biotechnol Food Sci 2020; 9: 932-936.
  • 2. Nural Yaman B, Aytar Çelik P, Mutlu M B, Cabuk A. A combinational analysis of acidophilic bacterial diversity of iron-rich environment, Geomicrobiol J 2020; DOI: 10.1080/01490451.2020.1795320
  • 3. Aytar P, Kay C M, Mutlu M B, Cabuk A, Coal desulfurization with Acidithiobacillus ferrivorans, from Balya acidic mine drainage, Energ Fuel 2013; 27: 3090-3098.
  • 4. Nural Yaman B, Deniz Sonmez G, Aytar Celik P, Korkmaz F, Mutlu M B, Cabuk A, Culture-dependent diversity of boron-tolerant bacteria from boron mine tailings pond and solid wastes, Water Environ J 2019; 33: 574-581.
  • 5. Gedikli S, Aytar Çelik P, Demirbilek M, Mutlu M B, Denkbaş E B, Çabuk A, Experimental exploration of thermostable poly(β-hydroxybutryrates) by Geobacillus kaustophilus using Box-Behnken design, J Polym Environ 2019; 27: 245-255.
  • 6. Wilkins LGE, Ettinger C L, Jospin G & Eisen J A, Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia, Sci Rep 2019; 9:1-15.
  • 7. Coman C, Drugǎ B, Hegedus A, Sicora C & Dragos N. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 2013; 17:523-534.
  • 8. Özçelik B, Aytar P, Gedikli S, Yardımcı E, Çalışkan F & Cabuk A, Production of alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification, J Enzyme Inhib Med Chem 2014; 29:388-396.
  • 9. Yiğit Şat E, Nural Yaman B, Gedikli S, Aytar Çelik P, Çabuk A, Heat and pH stable protease produced by a bacterium isolated from fields with high boron, J Microbiol Biotechnol Food Sci 2020; 9: 1047-1052.
  • 10. Yardımcı Akkır E, Şahin Y B, Gedikli S, Çelik P A & Çabuk A, Extremely thermostable, EDTA-resistant alkaline protease from a thermophilic Geobacillus subterraneus C2-1 isolate. J Microbiol Biotechnol Food Sci 2017; 7:50-56.
  • 11. Gemici Ü & Tarcan G, Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. J Volcanol Geotherm Res 2002; 116:215-233.
  • 12. Bello O, Özgür N & Çalışkan T A, Hydrogeological, hydrogeochemical and isotope geochemical features of Geothermal waters, in Simav and environs, Western Anatolia, Turkey, Procedia Earth Planet Sci 2017; 17:29-32.
  • 13. Amann R, Ludwig W & Schleifer K H, Phylogenetic identification of individual microbial cells without cultivation, Microbiol Rev 1995; 59:143-169.
  • 14. Mutlu M B & Güven K, Detection of prokaryotic microbial communities of Çamaltı Saltern, Turkey, by fluorescein in situ hybridization and real-time PCR, Turkish J Biol 2011; 35:687-695.
  • 15. Aytar P, Kay C M, Mutlu M B, Çabuk A & Johnson D B, Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey, Environ Sci Pollut Res 2015; 22:5995-6003.
  • 16. Castenholz RW, Thermophilic blue-green algae and the thermal environment, Bacteriol Rev 1969; 33:476-504.
  • 17. Brock TD, Thermophilic microorganisms and life at high temperatures (Springer-Verlag, New York) 1978.
  • 18. Lane D J, Pace B, Olsen G J, Stahl D A, Sogin M L & Pace N R, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc Natl Acad Sci 1985; 82:6955-6959.
  • 19. Marchesi J R, Sato T, Weightman A J, Martin T A, Fry J C, Hiom S J & Wade W G, Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA, Appl Environ Microbiol 1998; 64:795-799.
  • 20. Saitou N & Nei M, The neighbor-joining method:A new method for reconstructing phylogenetic trees, Mol Biol Evol 1987; 4:406-425.
  • 21. Kumar S, Stecher G, & Tamura K, MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870-1874.
  • 22. Anson M L, The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin, J Gen Physiol 1938; 22:79–89.
  • 23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal Biochem 1976; 72: 248-254.
  • 24. Takami H, Akiba T & Horikoshi K, Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101, Appl Microbiol Biotechnol 1989; 30:120-124.
  • 25. Tamura K, Nei M & Kumar S, Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc Natl Acad Sci USA 2004; 101:11030-11035.
  • 26. Akkaya S & Kıvanç M, Termofil Bakteriler Sıcak Su Kaynaklarında Yaşayan Gr (+) Basillerin İzolasyon ve İdentifikasyon Yöntemleri, AKU-J Sc. Eng 2008; 8:61-70.
  • 27. Yilmaz Cankilic M, Determination of Cyanobacterial Composition of Eynal (Simav) Hot Spring in Kütahya, Turkey, Appl Ecol Environ Res 2016; 14:607-622.
  • 28. Yilmaz Cankilic M, Celikoglu E & Celikoglu U, Screening of Hydrolytic Enzyme Production and Fatty Acid Methyl Esters (Fame) Analysis of Thermophilic Bacteria from Hot Springs, Fresen Environ Bull 2017; 26:5865-5872.
  • 29. Chen C, Maity J P, Bundschuh J, Bhattacharya P, Baba A & Gündüz O, Occurrence of arsenic and related microbial signature of hydrothermal systems in Western, Turkey (London: CRC Press) 2012; pp. 486-488.
  • 30. Rai S K, Roy J K & Mukherjee A K, Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II, Appl Microbiol Biotechnol 2010; 85:1437-1450.
  • 31. Pandey A, Dhakar K, Sharma A, Priti P, Sati P & Kumar B Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India, Ann Microbiol 2015; 65: 809-816.
  • 32. Cavello I, Urbieta M S, Segretin A B, Giaveno A, Cavalitto S & Donati E R, Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina, Geomicrobiol J 2018; 35:156-165.
  • 33. Panosyan H H, Thermophilic bacilli isolated from Armenian geothermal springs and their potential for production of hydrolytic enzymes. Int J Biotech Bioeng 2017; 3: 239-244.
Year 2020, , 436 - 445, 30.09.2020
https://doi.org/10.18038/estubtda.635789

Abstract

References

  • 1. Nural Yaman B, Mutlu M B, Aytar Çelik P, Çabuk A, Metagenomics (16S amplicon sequencing) and DGGE analysis of bacterial diversity of acid mine drainage, J Microbiol Biotechnol Food Sci 2020; 9: 932-936.
  • 2. Nural Yaman B, Aytar Çelik P, Mutlu M B, Cabuk A. A combinational analysis of acidophilic bacterial diversity of iron-rich environment, Geomicrobiol J 2020; DOI: 10.1080/01490451.2020.1795320
  • 3. Aytar P, Kay C M, Mutlu M B, Cabuk A, Coal desulfurization with Acidithiobacillus ferrivorans, from Balya acidic mine drainage, Energ Fuel 2013; 27: 3090-3098.
  • 4. Nural Yaman B, Deniz Sonmez G, Aytar Celik P, Korkmaz F, Mutlu M B, Cabuk A, Culture-dependent diversity of boron-tolerant bacteria from boron mine tailings pond and solid wastes, Water Environ J 2019; 33: 574-581.
  • 5. Gedikli S, Aytar Çelik P, Demirbilek M, Mutlu M B, Denkbaş E B, Çabuk A, Experimental exploration of thermostable poly(β-hydroxybutryrates) by Geobacillus kaustophilus using Box-Behnken design, J Polym Environ 2019; 27: 245-255.
  • 6. Wilkins LGE, Ettinger C L, Jospin G & Eisen J A, Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia, Sci Rep 2019; 9:1-15.
  • 7. Coman C, Drugǎ B, Hegedus A, Sicora C & Dragos N. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 2013; 17:523-534.
  • 8. Özçelik B, Aytar P, Gedikli S, Yardımcı E, Çalışkan F & Cabuk A, Production of alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification, J Enzyme Inhib Med Chem 2014; 29:388-396.
  • 9. Yiğit Şat E, Nural Yaman B, Gedikli S, Aytar Çelik P, Çabuk A, Heat and pH stable protease produced by a bacterium isolated from fields with high boron, J Microbiol Biotechnol Food Sci 2020; 9: 1047-1052.
  • 10. Yardımcı Akkır E, Şahin Y B, Gedikli S, Çelik P A & Çabuk A, Extremely thermostable, EDTA-resistant alkaline protease from a thermophilic Geobacillus subterraneus C2-1 isolate. J Microbiol Biotechnol Food Sci 2017; 7:50-56.
  • 11. Gemici Ü & Tarcan G, Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. J Volcanol Geotherm Res 2002; 116:215-233.
  • 12. Bello O, Özgür N & Çalışkan T A, Hydrogeological, hydrogeochemical and isotope geochemical features of Geothermal waters, in Simav and environs, Western Anatolia, Turkey, Procedia Earth Planet Sci 2017; 17:29-32.
  • 13. Amann R, Ludwig W & Schleifer K H, Phylogenetic identification of individual microbial cells without cultivation, Microbiol Rev 1995; 59:143-169.
  • 14. Mutlu M B & Güven K, Detection of prokaryotic microbial communities of Çamaltı Saltern, Turkey, by fluorescein in situ hybridization and real-time PCR, Turkish J Biol 2011; 35:687-695.
  • 15. Aytar P, Kay C M, Mutlu M B, Çabuk A & Johnson D B, Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey, Environ Sci Pollut Res 2015; 22:5995-6003.
  • 16. Castenholz RW, Thermophilic blue-green algae and the thermal environment, Bacteriol Rev 1969; 33:476-504.
  • 17. Brock TD, Thermophilic microorganisms and life at high temperatures (Springer-Verlag, New York) 1978.
  • 18. Lane D J, Pace B, Olsen G J, Stahl D A, Sogin M L & Pace N R, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc Natl Acad Sci 1985; 82:6955-6959.
  • 19. Marchesi J R, Sato T, Weightman A J, Martin T A, Fry J C, Hiom S J & Wade W G, Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA, Appl Environ Microbiol 1998; 64:795-799.
  • 20. Saitou N & Nei M, The neighbor-joining method:A new method for reconstructing phylogenetic trees, Mol Biol Evol 1987; 4:406-425.
  • 21. Kumar S, Stecher G, & Tamura K, MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870-1874.
  • 22. Anson M L, The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin, J Gen Physiol 1938; 22:79–89.
  • 23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal Biochem 1976; 72: 248-254.
  • 24. Takami H, Akiba T & Horikoshi K, Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101, Appl Microbiol Biotechnol 1989; 30:120-124.
  • 25. Tamura K, Nei M & Kumar S, Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc Natl Acad Sci USA 2004; 101:11030-11035.
  • 26. Akkaya S & Kıvanç M, Termofil Bakteriler Sıcak Su Kaynaklarında Yaşayan Gr (+) Basillerin İzolasyon ve İdentifikasyon Yöntemleri, AKU-J Sc. Eng 2008; 8:61-70.
  • 27. Yilmaz Cankilic M, Determination of Cyanobacterial Composition of Eynal (Simav) Hot Spring in Kütahya, Turkey, Appl Ecol Environ Res 2016; 14:607-622.
  • 28. Yilmaz Cankilic M, Celikoglu E & Celikoglu U, Screening of Hydrolytic Enzyme Production and Fatty Acid Methyl Esters (Fame) Analysis of Thermophilic Bacteria from Hot Springs, Fresen Environ Bull 2017; 26:5865-5872.
  • 29. Chen C, Maity J P, Bundschuh J, Bhattacharya P, Baba A & Gündüz O, Occurrence of arsenic and related microbial signature of hydrothermal systems in Western, Turkey (London: CRC Press) 2012; pp. 486-488.
  • 30. Rai S K, Roy J K & Mukherjee A K, Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II, Appl Microbiol Biotechnol 2010; 85:1437-1450.
  • 31. Pandey A, Dhakar K, Sharma A, Priti P, Sati P & Kumar B Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India, Ann Microbiol 2015; 65: 809-816.
  • 32. Cavello I, Urbieta M S, Segretin A B, Giaveno A, Cavalitto S & Donati E R, Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina, Geomicrobiol J 2018; 35:156-165.
  • 33. Panosyan H H, Thermophilic bacilli isolated from Armenian geothermal springs and their potential for production of hydrolytic enzymes. Int J Biotech Bioeng 2017; 3: 239-244.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Osman Erdönmez This is me 0000-0002-1437-7445

Serap Gedikli

Belma Nural Yaman 0000-0003-2576-1300

Pınar Aytar Çelik 0000-0002-9447-1668

Ahmet Çabuk This is me 0000-0002-4619-6948

Publication Date September 30, 2020
Published in Issue Year 2020

Cite

AMA Erdönmez O, Gedikli S, Nural Yaman B, Aytar Çelik P, Çabuk A. THERMOPHILIC PROKARYOTIC DIVERSITY OF EYNAL GEOTHERMAL SPRING AND PROTEASE PRODUCTION POTENTIALS OF ISOLATES. Estuscience - Se. September 2020;21(3):436-445. doi:10.18038/estubtda.635789