Research Article
BibTex RIS Cite
Year 2021, , 215 - 238, 29.06.2021
https://doi.org/10.18038/estubtda.831556

Abstract

References

  • [1] Zinkle SJ and Busby JT. Structural materials for fission & fusion energy, Materials Today, vol. 12, Nov. 2009, no. 11. pp. 12–19, , doi: 10.1016/S1369-7021(09)70294-9.
  • [2] Motta AT, Couet A and Comstock RJ. Corrosion of Zirconium Alloys used for Nuclear Fuel Cladding, Annu. Rev. Mater. Res. 2015, vol. 45, no. 1, pp. 311–343, doi: 10.1146/annurev-matsci-070214-020951.
  • [3] Kakiuchi K, Ohira K, Itagaki N, Otsuka Y, Ishii Y and Miyazaki A. Irradiated behavior at high burnup for hifi alloy. J. Nucl. Sci. Technol., 2006; vol. 43, no. 9, pp. 1031–1036, doi: 10.1080/18811248.2006.9711192.
  • [4] Parashari S, Mukherjee S, Vansola V, Makwana R, Singh NL and Pandey B. Investigation of (n, p), (n, 2n) reaction cross sections for Sn isotopes for fusion reactor applications. Appl. Radiat. Isot., 2018; vol. 133, pp. 31–37, doi: 10.1016/j.apradiso.2017.12.003.
  • [5] Sarpün IH, Aydln A and Pekdoǧan H. Determination of the effects of nuclear level density parameters on photofission cross sections of 235U up to 20 MeV. EPJ Web Conf., vol. 146, pp. 2016–2018, 2017, doi: 10.1051/epjconf/201714605015.
  • [6] Aydin A, Pekdogan H, Kaplan A, Sarpün IH, Tel E and Demir B. Comparison of Level Density Models for the 60,61,62,64Ni(p, n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV. J. Fusion Energy, Oct. 2015; vol. 34, no. 5, pp. 1105–1108, doi: 10.1007/s10894-015-9927-2.
  • [7] Özdoğan H, Şekerci M, Sarpün H and Kaplan A. Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Appl. Radiat. Isot., Oct. 2018; vol. 140, pp. 29–34, doi: 10.1016/j.apradiso.2018.06.013.
  • [8] Koning A, Hilaire S and Goriely S. Talys-1.9: A nuclear reaction program manual, p. 781, 2017.
  • [9] Koning AJ, Hilaire S and Goriely S. Global and local level density models. Nucl. Phys. A, 2008; vol. 810, no. 1–4, pp. 13–76, doi: 10.1016/j.nuclphysa.2008.06.005.
  • [10] Gilbert A and Cameron AGW. A Composite Nuclear-Level Density Formula with Shell Corrections. Can J Phys, Aug. 1965; vol. 43, no. 8, pp. 1446–1496, doi: 10.1139/p65-139.
  • [11] Grossjean MK and Feldmeier H. Level density of a Fermi gas with pairing interactions. Nucl. Phys. A, Oct. 1985; vol. 444, no. 1, pp. 113–132, doi: 10.1016/0375-9474(85)90294-5.
  • [12] Demetriou P and Goriely S. Microscopic nuclear level densities for practical applications. Nucl. Phys. A, Dec. 2001; vol. 695, no. 1–4, pp. 95–108, doi: 10.1016/S0375-9474(01)01095-8.
  • [13] Dilg W, Schantl W, Vonach H and Uhl M. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A, Dec. 1973; vol. 217, no. 2, pp. 269–298, doi: 10.1016/0375-9474(73)90196-6.
  • [14] Ignatyuk AV. Smirenkin GN and Tishin AS. Phenomenological description of energy dependence of the level density parameter. Yad. Fiz., vol. 21, no. 3, pp. 485–490, 1975, Accessed: Dec. 13, 2019. [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:6208426.
  • [15] Baba H. A shell-model nuclear level density. Nucl. Physics, Sect. A, 1970; vol. 159, no. 2, pp. 625–641, doi: 10.1016/0375-9474(70)90862-6.
  • [16] Goriely S, Hilaire S and Koning AJ, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method, Phys. Rev. C - Nucl. Phys., vol. 78, no. 6, p. 064307, Dec. 2008, doi: 10.1103/PhysRevC.78.064307.
  • [17] Hilaire S, Girod M. Goriely S and Koning AJ. Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C - Nucl. Phys., 2012; vol. 86, no. 6, p. 064317, Dec. doi: 10.1103/PhysRevC.86.064317.
  • [18] Goriely S, Hilaire S, Girod M and Péru S. First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. Phys. Rev. Lett., Jun. 2009; vol. 102, no. 24, doi: 10.1103/PhysRevLett.102.242501.

INVESTIGATION OF NEUTRON-INDUCED REACTION CROSS SECTIONS FOR SEVERAL NUCLEAR REACTOR STRUCTURAL MATERIALS

Year 2021, , 215 - 238, 29.06.2021
https://doi.org/10.18038/estubtda.831556

Abstract

Selection of the appropriate materials as a structural components of nuclear reactor are of key importance to implement the highest efficiency and security. Zr, Fe, Cr, Sn and Nb are commonly used materials involved in structural alloy inside the reactor. The presented result of neutron-induced reaction cross section calculations for Cr50-52-53-54, Fe54-56-57, Nb93, Sn117-119-124, Zr90-91-92 have been computed using Constant Temperature Model, Back Shifted Fermi Gas Model, Generalised Super Fluid Model and Microscopic level densities presented in TALYS 1.9 nuclear code. The calculations have been repeated by changing the level density parameter a for each isotope and model to observe changes in the model assumption. The obtained results are compared with the experimental data taken from the literature.

References

  • [1] Zinkle SJ and Busby JT. Structural materials for fission & fusion energy, Materials Today, vol. 12, Nov. 2009, no. 11. pp. 12–19, , doi: 10.1016/S1369-7021(09)70294-9.
  • [2] Motta AT, Couet A and Comstock RJ. Corrosion of Zirconium Alloys used for Nuclear Fuel Cladding, Annu. Rev. Mater. Res. 2015, vol. 45, no. 1, pp. 311–343, doi: 10.1146/annurev-matsci-070214-020951.
  • [3] Kakiuchi K, Ohira K, Itagaki N, Otsuka Y, Ishii Y and Miyazaki A. Irradiated behavior at high burnup for hifi alloy. J. Nucl. Sci. Technol., 2006; vol. 43, no. 9, pp. 1031–1036, doi: 10.1080/18811248.2006.9711192.
  • [4] Parashari S, Mukherjee S, Vansola V, Makwana R, Singh NL and Pandey B. Investigation of (n, p), (n, 2n) reaction cross sections for Sn isotopes for fusion reactor applications. Appl. Radiat. Isot., 2018; vol. 133, pp. 31–37, doi: 10.1016/j.apradiso.2017.12.003.
  • [5] Sarpün IH, Aydln A and Pekdoǧan H. Determination of the effects of nuclear level density parameters on photofission cross sections of 235U up to 20 MeV. EPJ Web Conf., vol. 146, pp. 2016–2018, 2017, doi: 10.1051/epjconf/201714605015.
  • [6] Aydin A, Pekdogan H, Kaplan A, Sarpün IH, Tel E and Demir B. Comparison of Level Density Models for the 60,61,62,64Ni(p, n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV. J. Fusion Energy, Oct. 2015; vol. 34, no. 5, pp. 1105–1108, doi: 10.1007/s10894-015-9927-2.
  • [7] Özdoğan H, Şekerci M, Sarpün H and Kaplan A. Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Appl. Radiat. Isot., Oct. 2018; vol. 140, pp. 29–34, doi: 10.1016/j.apradiso.2018.06.013.
  • [8] Koning A, Hilaire S and Goriely S. Talys-1.9: A nuclear reaction program manual, p. 781, 2017.
  • [9] Koning AJ, Hilaire S and Goriely S. Global and local level density models. Nucl. Phys. A, 2008; vol. 810, no. 1–4, pp. 13–76, doi: 10.1016/j.nuclphysa.2008.06.005.
  • [10] Gilbert A and Cameron AGW. A Composite Nuclear-Level Density Formula with Shell Corrections. Can J Phys, Aug. 1965; vol. 43, no. 8, pp. 1446–1496, doi: 10.1139/p65-139.
  • [11] Grossjean MK and Feldmeier H. Level density of a Fermi gas with pairing interactions. Nucl. Phys. A, Oct. 1985; vol. 444, no. 1, pp. 113–132, doi: 10.1016/0375-9474(85)90294-5.
  • [12] Demetriou P and Goriely S. Microscopic nuclear level densities for practical applications. Nucl. Phys. A, Dec. 2001; vol. 695, no. 1–4, pp. 95–108, doi: 10.1016/S0375-9474(01)01095-8.
  • [13] Dilg W, Schantl W, Vonach H and Uhl M. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A, Dec. 1973; vol. 217, no. 2, pp. 269–298, doi: 10.1016/0375-9474(73)90196-6.
  • [14] Ignatyuk AV. Smirenkin GN and Tishin AS. Phenomenological description of energy dependence of the level density parameter. Yad. Fiz., vol. 21, no. 3, pp. 485–490, 1975, Accessed: Dec. 13, 2019. [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:6208426.
  • [15] Baba H. A shell-model nuclear level density. Nucl. Physics, Sect. A, 1970; vol. 159, no. 2, pp. 625–641, doi: 10.1016/0375-9474(70)90862-6.
  • [16] Goriely S, Hilaire S and Koning AJ, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method, Phys. Rev. C - Nucl. Phys., vol. 78, no. 6, p. 064307, Dec. 2008, doi: 10.1103/PhysRevC.78.064307.
  • [17] Hilaire S, Girod M. Goriely S and Koning AJ. Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C - Nucl. Phys., 2012; vol. 86, no. 6, p. 064317, Dec. doi: 10.1103/PhysRevC.86.064317.
  • [18] Goriely S, Hilaire S, Girod M and Péru S. First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. Phys. Rev. Lett., Jun. 2009; vol. 102, no. 24, doi: 10.1103/PhysRevLett.102.242501.
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Dağ 0000-0002-0503-6067

Publication Date June 29, 2021
Published in Issue Year 2021

Cite

AMA Dağ M. INVESTIGATION OF NEUTRON-INDUCED REACTION CROSS SECTIONS FOR SEVERAL NUCLEAR REACTOR STRUCTURAL MATERIALS. Estuscience - Se. June 2021;22(2):215-238. doi:10.18038/estubtda.831556