Research Article
BibTex RIS Cite

VOLTAMMETRIC DETERMINATION OF ESTRADIOL IN MILK AND PHARMACEUTICALS BASED ON FUMED-SILICA MODIFIED CARBON PASTE ELECTRODE

Year 2018, Volume: 19 Issue: 4, 963 - 975, 31.12.2018
https://doi.org/10.18038/aubtda.430622

Abstract

In this study, modification of carbon paste electrode (CPE) with a nano-structured substance, fumed silica (FS), was investigated to develop a voltammetric method for the determination of an endocrine disrupting chemical, estradiol (EST). FS prominently increased the voltammetric response of CPE towards EST. The parameters that affect the volmametric performance of modified CPE were examined to find the optimal conditions. Modified electrode showed a linear response towards EST between the concentration values of 0.1 mM and 15.0 mM EST. Limit of detection value for the method developed was calculated as 0.023 mM. Production reproducibility of the modified electrode was obtained as 3.6 %. The voltammetric behavior of EST was also examined in the presence of different possible substances to evaluate their interference effects. The modified electrode successfully discriminated the oxidation potential of EST in the presence of different substances. The determination of EST was tested in milk and pharmaceutical samples to evaluate the analytical performance of the method. The recovery analysis of EST in milk samples showed that the modified electrode can be used safely in these samples. The modified electrode also achieved the determination of EST in pharmaceutical samples.

References

  • [1] Ji L, Wang Y, Wu K, Zhang W. Simultaneous determination of environmental estrogens: Diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 2016; 159: 215–21.
  • [2] Moraes FC, Rossi B, Donatoni MC, de Oliveira KT, Pereira EC. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal Chim Acta 2015; 881: 37–43.
  • [3] Zhang X, Peng Y, Bai J, Ning B, Sun S, Hong X, et al. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection. Sens Actuat B: Chem 2014; 200: 69–75.
  • [4] Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology 2006; 226(2–3): 79–89.
  • [5] Monerris MJ, Arivalo FJ, Fernandez H, Zon MA, Molina PG. Development of a very sensitive electrochemical immunosensor for the determination of 17-estradiol in bovine serum samples. Sens Actuat B: Chem 2015; 208: 525–31.
  • [6] Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 2015; 67: 184–91.
  • [7] Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res 2003; 37(14): 3530–7.
  • [8] Jiang T, Zhao L, Chu B, Feng Q, Yan W, Lin JM. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography. Talanta 2009; 78(2): 442–7.
  • [9] Joong S, Taye K, Yong S, Dartois V, Nae S, Bae D, et al. Development and validation of LC-ESI-MS/MS method for analysis of moxifloxacin and levofloxacin in serum of multidrug-resistant tuberculosis patients: Potential application as therapeutic drug monitoring tool in medical diagnosis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1010: 138–43.
  • [10] Choi MH, Kim KR, Chung BC. Determination of estrone and 17β-estradiol in human hair by gas chromatography–mass spectrometry. Analyst 2000; 125(4): 711–4.
  • [11] Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, et al. Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J Biotechnol 2004; 108(2): 153–9.
  • [12] Shanin IA, Thuy NTD, Eremin SA. Determination of levofloxacin (the Levorotatory Stereoisomer of Ofloxacin) in milk by an indirect enzyme-linked immunosorbent assay. Moscow Univ Chem Bull 2014; 69(3): 136–41.
  • [13] Volpe G, Fares G, Quadri F delli, Draisci R, Ferretti G, Marchiafava C, et al. A disposable immunosensor for detection of 17β-estradiol in non-extracted bovine serum. Anal Chim Acta 2006; 572(1): 11–6.
  • [14] Wen T, Xue C, Li Y, Wang Y, Wang R, Hong J, et al. Reduced graphene oxide-platinum nanoparticles composites based imprinting sensor for sensitively electrochemical analysis of 17β-estradiol. J Electroanal Chem 2012; 682: 121–7.
  • [15] Dharuman V, Hahn JH, Jayakumar K, Teng W. Electrochemically reduced graphene-gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol. Electrochim Acta 2013; 114: 590–7.
  • [16] Lin X, Li Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 2006; 22(2): 253–9.
  • [17] Özcan A, Topçuoğulları D. Voltammetric determination of 17-Β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite. Sens Actuat B: Chem 2017; 250: 85–90.
  • [18] Wang Z, Wang P, Tu X, Wu Y, Zhan G, Li C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly{1-butyl-3-[3-(N-pyrrole)propyl]imidazole dodecyl sulfonate} moiety. Sens Actuat B: Chem 2014; 193: 190–7.
  • [19] Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, et al. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol. Biosens Bioelectron 2011; 29(1): 29–33.
  • [20] Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J. Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 2015; 884: 106–13.
  • [21] Florea A, Cristea C, Vocanson F, Səndulescu R, Jaffrezic-Renault N. Electrochemical sensor for the detection of estradiol based on electropolymerized molecularly imprinted polythioaniline film with signal amplification using gold nanoparticles. Electrochem Commun 2015; 59: 36–9.
  • [22] Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 2007; 22(11): 2525–31.
  • [23] Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, et al. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 2017; 89: 343–51.
  • [24] Ourari A, Ketfi B, Malha SIR, Amine A. Electrocatalytic reduction of nitrite and bromate and their highly sensitive determination on carbon paste electrode modified with new copper Schiff base complex. J Electroanal Chem 2017; 797(May): 31–6.
  • [25] Ranđelović MS, Momčilović MZ, Nikolić G, Ðordević JS. Electrocatalitic behaviour of serpentinite modified carbon paste electrode. J Electroanal Chem 2017; 801: 338–44.
  • [26] Saleh TA, AlAqad KMM, Rahim A. Electrochemical sensor for the determination of ketoconazole based on gold nanoparticles modified carbon paste electrode. J Mol Liq 2018; 256: 39–48.
  • [27] Núñez C, Arancibia V, Triviño JJ. A new strategy for the modification of a carbon paste electrode with carrageenan hydrogel for a sensitive and selective determination of arsenic in natural waters. Talanta 2018; 187: 259–64.
  • [28] Cochrane H, Lin CS. The Influence of Fumed Silica Properties on the Processing, Curing, and Reinforcement Properties of Silicone Rubber. Rubber Chem and Technol 1993; 66(1): 48-60.
  • [29] Özcan A, Gürbüz M, Özbal A. Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite. Sens Actuat B: Chem 2018; 255: 1517–24.
  • [30] Kaushik A, Solanki PR, Sood KN, Ahmad S, Malhotra BD. Fumed silica nanoparticles-chitosan nanobiocomposite for ochratoxin-A detection. Electrochem Commun 2009; 11(10): 1919–23.
Year 2018, Volume: 19 Issue: 4, 963 - 975, 31.12.2018
https://doi.org/10.18038/aubtda.430622

Abstract

References

  • [1] Ji L, Wang Y, Wu K, Zhang W. Simultaneous determination of environmental estrogens: Diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 2016; 159: 215–21.
  • [2] Moraes FC, Rossi B, Donatoni MC, de Oliveira KT, Pereira EC. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal Chim Acta 2015; 881: 37–43.
  • [3] Zhang X, Peng Y, Bai J, Ning B, Sun S, Hong X, et al. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection. Sens Actuat B: Chem 2014; 200: 69–75.
  • [4] Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology 2006; 226(2–3): 79–89.
  • [5] Monerris MJ, Arivalo FJ, Fernandez H, Zon MA, Molina PG. Development of a very sensitive electrochemical immunosensor for the determination of 17-estradiol in bovine serum samples. Sens Actuat B: Chem 2015; 208: 525–31.
  • [6] Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 2015; 67: 184–91.
  • [7] Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res 2003; 37(14): 3530–7.
  • [8] Jiang T, Zhao L, Chu B, Feng Q, Yan W, Lin JM. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography. Talanta 2009; 78(2): 442–7.
  • [9] Joong S, Taye K, Yong S, Dartois V, Nae S, Bae D, et al. Development and validation of LC-ESI-MS/MS method for analysis of moxifloxacin and levofloxacin in serum of multidrug-resistant tuberculosis patients: Potential application as therapeutic drug monitoring tool in medical diagnosis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1010: 138–43.
  • [10] Choi MH, Kim KR, Chung BC. Determination of estrone and 17β-estradiol in human hair by gas chromatography–mass spectrometry. Analyst 2000; 125(4): 711–4.
  • [11] Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, et al. Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J Biotechnol 2004; 108(2): 153–9.
  • [12] Shanin IA, Thuy NTD, Eremin SA. Determination of levofloxacin (the Levorotatory Stereoisomer of Ofloxacin) in milk by an indirect enzyme-linked immunosorbent assay. Moscow Univ Chem Bull 2014; 69(3): 136–41.
  • [13] Volpe G, Fares G, Quadri F delli, Draisci R, Ferretti G, Marchiafava C, et al. A disposable immunosensor for detection of 17β-estradiol in non-extracted bovine serum. Anal Chim Acta 2006; 572(1): 11–6.
  • [14] Wen T, Xue C, Li Y, Wang Y, Wang R, Hong J, et al. Reduced graphene oxide-platinum nanoparticles composites based imprinting sensor for sensitively electrochemical analysis of 17β-estradiol. J Electroanal Chem 2012; 682: 121–7.
  • [15] Dharuman V, Hahn JH, Jayakumar K, Teng W. Electrochemically reduced graphene-gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol. Electrochim Acta 2013; 114: 590–7.
  • [16] Lin X, Li Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 2006; 22(2): 253–9.
  • [17] Özcan A, Topçuoğulları D. Voltammetric determination of 17-Β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite. Sens Actuat B: Chem 2017; 250: 85–90.
  • [18] Wang Z, Wang P, Tu X, Wu Y, Zhan G, Li C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly{1-butyl-3-[3-(N-pyrrole)propyl]imidazole dodecyl sulfonate} moiety. Sens Actuat B: Chem 2014; 193: 190–7.
  • [19] Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, et al. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol. Biosens Bioelectron 2011; 29(1): 29–33.
  • [20] Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J. Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 2015; 884: 106–13.
  • [21] Florea A, Cristea C, Vocanson F, Səndulescu R, Jaffrezic-Renault N. Electrochemical sensor for the detection of estradiol based on electropolymerized molecularly imprinted polythioaniline film with signal amplification using gold nanoparticles. Electrochem Commun 2015; 59: 36–9.
  • [22] Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 2007; 22(11): 2525–31.
  • [23] Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, et al. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 2017; 89: 343–51.
  • [24] Ourari A, Ketfi B, Malha SIR, Amine A. Electrocatalytic reduction of nitrite and bromate and their highly sensitive determination on carbon paste electrode modified with new copper Schiff base complex. J Electroanal Chem 2017; 797(May): 31–6.
  • [25] Ranđelović MS, Momčilović MZ, Nikolić G, Ðordević JS. Electrocatalitic behaviour of serpentinite modified carbon paste electrode. J Electroanal Chem 2017; 801: 338–44.
  • [26] Saleh TA, AlAqad KMM, Rahim A. Electrochemical sensor for the determination of ketoconazole based on gold nanoparticles modified carbon paste electrode. J Mol Liq 2018; 256: 39–48.
  • [27] Núñez C, Arancibia V, Triviño JJ. A new strategy for the modification of a carbon paste electrode with carrageenan hydrogel for a sensitive and selective determination of arsenic in natural waters. Talanta 2018; 187: 259–64.
  • [28] Cochrane H, Lin CS. The Influence of Fumed Silica Properties on the Processing, Curing, and Reinforcement Properties of Silicone Rubber. Rubber Chem and Technol 1993; 66(1): 48-60.
  • [29] Özcan A, Gürbüz M, Özbal A. Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite. Sens Actuat B: Chem 2018; 255: 1517–24.
  • [30] Kaushik A, Solanki PR, Sood KN, Ahmad S, Malhotra BD. Fumed silica nanoparticles-chitosan nanobiocomposite for ochratoxin-A detection. Electrochem Commun 2009; 11(10): 1919–23.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Özcan This is me

Duygu Topçuoğulları This is me

Ayça Atılır Özcan This is me

Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 19 Issue: 4

Cite

AMA Özcan A, Topçuoğulları D, Özcan AA. VOLTAMMETRIC DETERMINATION OF ESTRADIOL IN MILK AND PHARMACEUTICALS BASED ON FUMED-SILICA MODIFIED CARBON PASTE ELECTRODE. Estuscience - Se. December 2018;19(4):963-975. doi:10.18038/aubtda.430622