Research Article
BibTex RIS Cite
Year 2019, Volume: 20 Issue: 1, 17 - 33, 01.01.2019
https://doi.org/10.18038/aubtda.474928

Abstract

References

  • Referans1. Shin KR, Kim YS, Yang HW, Ko YG, Shin DH. In vitro biological response to the oxide layer in pure titanium formed at different current densities by plasma electrolytic oxidation. Appl. Surf. Sci. 2014;314:221-227.
  • Referans2. Necula BS, Apachitei I, Fratila-Apachitei LE, van Langelaan EJ, Duszczyk J. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability. Appl. Surf. Sci. 2013;273:310-314.
  • Referans3. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog. Mater. Sci. 2009;54(3):397-425.
  • Referans4. Osman RB, Swain MV. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015;8(3):932-958.
  • Referans5. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Mater. 2007;23(7):844-854.
  • Referans6. Niinomi M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Transac. 2008;49(10):2170-2178.
  • Referans7. Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001;42(3-5):79-205.
  • Referans8. Degroot K, Geesink R, Klein C, Serekian P. Plasma Sprayed Coatings of Hydroxyapatite J. Biomed. Mater. Res. 1987;21(12):1375-1381.
  • Referans9. Lu YP, Li MS, Li ST, Wang ZG, Zhu RF. Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 2004;25(18):4393-4403.
  • Referans10. Wang H-d, He P-f, Ma G-z, Xu B-s, Xing Z-g, Chen S-y, Liu Z, Wang Y-w. Tribological behavior of plasma sprayed carbon nanotubes reinforced TiO2 coatings. J. Europ. Cer. Soc. 2018;38(10):3660-3672.
  • Referans11. Sidane D, Rammal H, Beljebbar A, Gangloff SC, Chicot D, Velard F, Khireddine H, Montagne A, Kerdjoudj H. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings. Mater. Sci. Eng. C 2017;72:650-658.
  • Referans12. Horkavcová D, Novák P, Fialová I, Černý M, Jablonská E, Lipov J, Ruml T, Helebrant A. Titania sol-gel coatings containing silver on newly developed TiSi alloys and their antibacterial effect. Mater. Sci. Eng. C 2017;76:25-30.
  • Referans13. Hazra SK, Tripathy SR, Alessandri I, Depero LE, Basu S. Characterizations of porous titania thin films produced by electrochemical etching. Mater. Sci. Eng. B 2006;131(1):135-141.
  • Referans14. Farrokhi-Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Cer. Inter. 2018;44(1):622-630.
  • Referans15. Farrokhi-Rad M. Electrophoretic deposition of titania nanostructured coatings with different porous patterns. Cer. Inter. 2018;44(13):15346-15355.
  • Referans16. Duarte LT, Bolfarini C, Biaggio SR, Rocha-Filho RC, Nascente PAP. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation. Mater. Sci. Eng. C 2014;41:343-348.
  • Referans17. Kazek-Kęsik A, Krok-Borkowicz M, Pamuła E, Simka W. Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. Mater. Sci. Eng. C 2014;43:172-181.
  • Referans18. Echeverry-Rendon M, Duque V, Quintero D, Harmsen MC, Echeverria F. Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants. Surf. Coat. Technol. 2018;354:28-37.
  • Referans19. Matykina E, Arrabal R, Skeldon P, Thompson GE, Wang P, Wood P. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surf. Coat. Technol. 2010;204(14):2142-2151.
  • Referans20. Yerokhin L, Snizhko LO, Gurevina NL, Leyland A, Pilkington A, Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phy. D-Appl. Phy. 2003;36(17):2110-2120.
  • Referans21. Yerokhin AL, Nie X, Leyland A, Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf. Coat. Technol. 2000;130(2–3):195-206.
  • Referans22. Adeleke SA, Ramesh S, Bushroa AR, Ching YC, Sopyan I, Maleque MA, Krishnasamy S, Chandran H, Misran H, Sutharsini U. The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Cer. Int. 2018;44(2):1802-1811.
  • Referans23. Sandhyarani M, Rameshbabu N, Venkateswarlu K, Krishna LR. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf. Coat. Technol. 2014;238:58-67.
  • Referans24. Kotharu V, Nagumothu R, Arumugam CB, Veerappan M, Sankaran S, Davoodbasha M, Nooruddin T. Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti. Cer. Int. 2012;38(1):731-740.
  • Referans25. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002;29:197-212.
  • Referans26. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W and others. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 2007;28(18):2869-2875.
  • Referans27. Chen L, Zheng L, Lv Y, Liu H, Wang G, Ren N, Liu D, Wang J, Boughton RI. Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications. Surf. Coat. Technol. 2010;204(23):3871-3875.
  • Referans28. Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coating formed by micro-arc oxidation. J. Biomed. Mater. Res. A 2009;88A(1):246-254.
  • Referans29. Jia ZJ, Xiu P, Li M, Xu XC, Shi YY, Cheng Y, Wei SC, Zheng YF, Xi TF, Cai H and others. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2016;75:203-222.
  • Referans30. Wang JX, Li JH, Guo GY, Wang QJ, Tang J, Zhao YC, Qin H, Wahafu T, Shen H, Liu XY and others. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Sci. Rep. 2016;6.
  • Referans31. Zhang L, Gao Q, Han Y. Zn and Ag Co-doped Anti-microbial TiO2 Coatings on Ti by Micro-arc Oxidation. J. Mater. Sci. Technol. 2016;32(9):919-924.
  • Referans32. Aydogan DT, Muhaffel F, Kilic MM, Acar OK, Cempura G, Baydogan M, Karaguler NG, Kose GT, Czyrska-Filemonowicz A, Cimenoglu H. Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater. Technol. 2018;33(2):119-126.
  • Referans33. Zhang X, Wu H, Geng Z, Huang X, Hang R, Ma Y, Yao X, Tang B. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater. Sci. Eng. C 2014;45:402-410.
  • Referans34. Zhang XY, Hang RQ, Wu HB, Huang XB, Ma Y, Lin NM, Yao XH, Tian LH, Tang B. Synthesis and antibacterial property of Ag-containing TiO2 coatings by combining magnetron sputtering with micro-arc oxidation. Surf. Coat. Technol. 2013;235:748-754.
  • Referans35. Durdu S, Aktug SL, Korkmaz K, Yalcin E, Aktas S. Fabrication, characterization and in vitro properties of silver-incorporated TiO2 coatings on titanium by thermal evaporation and micro-arc oxidation. Surf. Coat. Technol. 2018;352:600-608.
  • Referans36. Zhang P, Zhang ZG, Li W. Antibacterial TiO2 Coating Incorporating Silver Nanoparticles by Microarc Oxidation and Ion Implantation. J. Nanomater. 2013;2013:1-8.
  • Referans37. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27(15):2907-2915.
  • Referans38. Teker D, Muhaffel F, Menekse M, Karaguler NG, Baydogan M, Cimenoglu H. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C 2015;48:579-585.
  • Referans39. Zhang F, Chen S, Dong L, Lei Y, Liu T, Yin Y. Preparation of superhydrophobic films on titanium as effective corrosion barriers. Appl. Surf. Sci. 2011;257(7):2587-2591.
  • Referans40. Planell JA, Navarro M, Altankov G, Aparicio C, Engel E, Gil J, et al. Materials Surface Effects on Biological Interactions. In: In V. P. Shastri GA, & A. Lendlein, (Eds.), editors. Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles: Springer; 2010. p 233-252.
  • Referans41. Meiron TS, Marmur A, Saguy IS. Contact angle measurement on rough surfaces. J. Coll. Interface Sci. 2004;274(2):637-644.
  • Referans42. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials 1991;12(2):155-163.
  • Referans43. Fukuzaki S, Urano H, Nagata K. Adsorption of bovine serum albumin onto metal oxide surfaces. J. Ferm. Bioeng. 1996;81(2):163-167.
  • Referans44. Bongrand P, Capo C, Depieds R. Physics of cell adhesion. Prog. Surf. Sci. 1982;12(3):217-285.
  • Referans45. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003;24(25):4663-4670.
  • Referans46. Zeng Q, Chen ZQ, Li QL, Li G, Darvell BW. Surface modification of titanium implant and in vitro biocompatibility evaluation. Key Eng. Mater. 2005;288-289:315-318.
  • Referans47. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52(4):662-668.
  • Referans48. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J. Coll. Interface Sci. 2004;275(1):177-182.
  • Referans49. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18(17):6679-6686.

Characterization and Investigation of Biological Properties of Ag-Doped TiO2 Coatings Fabricated on Titanium

Year 2019, Volume: 20 Issue: 1, 17 - 33, 01.01.2019
https://doi.org/10.18038/aubtda.474928

Abstract

In present study, Ag-doped TiO2 bioceramic coatings were fabricated on cp-Ti by plasma electrolytic oxidation (PEO) and physical vapor deposition (PVD). The phase composition, surface microstructure, elemental composition, surface topography, wettability and chemical state of the PEO and Ag-doped TiO2 surfaces were characterized by using powder- and thin film-X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface profilometer and contact angle measurement system (CAM), respectively. The PEO coating’ surface was porous and rough due to the nature of process. The Ti, anatase-TiO2, rutile-TiO2 and Ag2O phases were detected on the Ag-doped PEO surfaces by TF-XRD while The Ti, anatase and rutile phases were obtained on the PEO surfaces. The surface morphology structure of the PEO coating was not changed by PVD process. The Ti, O, P and Ag elements were observed on the Ag-doped PEO surfaces by EDS. Also, the amount of Ag existed on the surface was below cytotoxic limit. The Ag-doped PEO surfaces indicated better hydrophilic character to the PEO surface owing to increasing polarity of the surfaces. In vitro hydroxyapatite-forming ability was evaluated by immersion in simulated body fluid (SBF) at 36.5 °C for 28 days. The Ag-doped PEO surfaces showed good hydroxyapatite formation ability compared to the PEO surface. The antibacterial activity was evaluated by exposing the samples to Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and they were compared by the reaction of the pathogens to Ag-doped PEO with the PEO controls. The antibacterial ability of the Ag-doped PEO surfaces was significantly improved respect to the PEO surfaces for S. aureus and E. coli.

References

  • Referans1. Shin KR, Kim YS, Yang HW, Ko YG, Shin DH. In vitro biological response to the oxide layer in pure titanium formed at different current densities by plasma electrolytic oxidation. Appl. Surf. Sci. 2014;314:221-227.
  • Referans2. Necula BS, Apachitei I, Fratila-Apachitei LE, van Langelaan EJ, Duszczyk J. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability. Appl. Surf. Sci. 2013;273:310-314.
  • Referans3. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog. Mater. Sci. 2009;54(3):397-425.
  • Referans4. Osman RB, Swain MV. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015;8(3):932-958.
  • Referans5. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Mater. 2007;23(7):844-854.
  • Referans6. Niinomi M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Transac. 2008;49(10):2170-2178.
  • Referans7. Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001;42(3-5):79-205.
  • Referans8. Degroot K, Geesink R, Klein C, Serekian P. Plasma Sprayed Coatings of Hydroxyapatite J. Biomed. Mater. Res. 1987;21(12):1375-1381.
  • Referans9. Lu YP, Li MS, Li ST, Wang ZG, Zhu RF. Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 2004;25(18):4393-4403.
  • Referans10. Wang H-d, He P-f, Ma G-z, Xu B-s, Xing Z-g, Chen S-y, Liu Z, Wang Y-w. Tribological behavior of plasma sprayed carbon nanotubes reinforced TiO2 coatings. J. Europ. Cer. Soc. 2018;38(10):3660-3672.
  • Referans11. Sidane D, Rammal H, Beljebbar A, Gangloff SC, Chicot D, Velard F, Khireddine H, Montagne A, Kerdjoudj H. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings. Mater. Sci. Eng. C 2017;72:650-658.
  • Referans12. Horkavcová D, Novák P, Fialová I, Černý M, Jablonská E, Lipov J, Ruml T, Helebrant A. Titania sol-gel coatings containing silver on newly developed TiSi alloys and their antibacterial effect. Mater. Sci. Eng. C 2017;76:25-30.
  • Referans13. Hazra SK, Tripathy SR, Alessandri I, Depero LE, Basu S. Characterizations of porous titania thin films produced by electrochemical etching. Mater. Sci. Eng. B 2006;131(1):135-141.
  • Referans14. Farrokhi-Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Cer. Inter. 2018;44(1):622-630.
  • Referans15. Farrokhi-Rad M. Electrophoretic deposition of titania nanostructured coatings with different porous patterns. Cer. Inter. 2018;44(13):15346-15355.
  • Referans16. Duarte LT, Bolfarini C, Biaggio SR, Rocha-Filho RC, Nascente PAP. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation. Mater. Sci. Eng. C 2014;41:343-348.
  • Referans17. Kazek-Kęsik A, Krok-Borkowicz M, Pamuła E, Simka W. Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. Mater. Sci. Eng. C 2014;43:172-181.
  • Referans18. Echeverry-Rendon M, Duque V, Quintero D, Harmsen MC, Echeverria F. Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants. Surf. Coat. Technol. 2018;354:28-37.
  • Referans19. Matykina E, Arrabal R, Skeldon P, Thompson GE, Wang P, Wood P. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surf. Coat. Technol. 2010;204(14):2142-2151.
  • Referans20. Yerokhin L, Snizhko LO, Gurevina NL, Leyland A, Pilkington A, Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phy. D-Appl. Phy. 2003;36(17):2110-2120.
  • Referans21. Yerokhin AL, Nie X, Leyland A, Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf. Coat. Technol. 2000;130(2–3):195-206.
  • Referans22. Adeleke SA, Ramesh S, Bushroa AR, Ching YC, Sopyan I, Maleque MA, Krishnasamy S, Chandran H, Misran H, Sutharsini U. The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Cer. Int. 2018;44(2):1802-1811.
  • Referans23. Sandhyarani M, Rameshbabu N, Venkateswarlu K, Krishna LR. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf. Coat. Technol. 2014;238:58-67.
  • Referans24. Kotharu V, Nagumothu R, Arumugam CB, Veerappan M, Sankaran S, Davoodbasha M, Nooruddin T. Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti. Cer. Int. 2012;38(1):731-740.
  • Referans25. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002;29:197-212.
  • Referans26. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W and others. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 2007;28(18):2869-2875.
  • Referans27. Chen L, Zheng L, Lv Y, Liu H, Wang G, Ren N, Liu D, Wang J, Boughton RI. Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications. Surf. Coat. Technol. 2010;204(23):3871-3875.
  • Referans28. Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coating formed by micro-arc oxidation. J. Biomed. Mater. Res. A 2009;88A(1):246-254.
  • Referans29. Jia ZJ, Xiu P, Li M, Xu XC, Shi YY, Cheng Y, Wei SC, Zheng YF, Xi TF, Cai H and others. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2016;75:203-222.
  • Referans30. Wang JX, Li JH, Guo GY, Wang QJ, Tang J, Zhao YC, Qin H, Wahafu T, Shen H, Liu XY and others. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Sci. Rep. 2016;6.
  • Referans31. Zhang L, Gao Q, Han Y. Zn and Ag Co-doped Anti-microbial TiO2 Coatings on Ti by Micro-arc Oxidation. J. Mater. Sci. Technol. 2016;32(9):919-924.
  • Referans32. Aydogan DT, Muhaffel F, Kilic MM, Acar OK, Cempura G, Baydogan M, Karaguler NG, Kose GT, Czyrska-Filemonowicz A, Cimenoglu H. Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater. Technol. 2018;33(2):119-126.
  • Referans33. Zhang X, Wu H, Geng Z, Huang X, Hang R, Ma Y, Yao X, Tang B. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater. Sci. Eng. C 2014;45:402-410.
  • Referans34. Zhang XY, Hang RQ, Wu HB, Huang XB, Ma Y, Lin NM, Yao XH, Tian LH, Tang B. Synthesis and antibacterial property of Ag-containing TiO2 coatings by combining magnetron sputtering with micro-arc oxidation. Surf. Coat. Technol. 2013;235:748-754.
  • Referans35. Durdu S, Aktug SL, Korkmaz K, Yalcin E, Aktas S. Fabrication, characterization and in vitro properties of silver-incorporated TiO2 coatings on titanium by thermal evaporation and micro-arc oxidation. Surf. Coat. Technol. 2018;352:600-608.
  • Referans36. Zhang P, Zhang ZG, Li W. Antibacterial TiO2 Coating Incorporating Silver Nanoparticles by Microarc Oxidation and Ion Implantation. J. Nanomater. 2013;2013:1-8.
  • Referans37. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27(15):2907-2915.
  • Referans38. Teker D, Muhaffel F, Menekse M, Karaguler NG, Baydogan M, Cimenoglu H. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C 2015;48:579-585.
  • Referans39. Zhang F, Chen S, Dong L, Lei Y, Liu T, Yin Y. Preparation of superhydrophobic films on titanium as effective corrosion barriers. Appl. Surf. Sci. 2011;257(7):2587-2591.
  • Referans40. Planell JA, Navarro M, Altankov G, Aparicio C, Engel E, Gil J, et al. Materials Surface Effects on Biological Interactions. In: In V. P. Shastri GA, & A. Lendlein, (Eds.), editors. Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles: Springer; 2010. p 233-252.
  • Referans41. Meiron TS, Marmur A, Saguy IS. Contact angle measurement on rough surfaces. J. Coll. Interface Sci. 2004;274(2):637-644.
  • Referans42. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials 1991;12(2):155-163.
  • Referans43. Fukuzaki S, Urano H, Nagata K. Adsorption of bovine serum albumin onto metal oxide surfaces. J. Ferm. Bioeng. 1996;81(2):163-167.
  • Referans44. Bongrand P, Capo C, Depieds R. Physics of cell adhesion. Prog. Surf. Sci. 1982;12(3):217-285.
  • Referans45. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003;24(25):4663-4670.
  • Referans46. Zeng Q, Chen ZQ, Li QL, Li G, Darvell BW. Surface modification of titanium implant and in vitro biocompatibility evaluation. Key Eng. Mater. 2005;288-289:315-318.
  • Referans47. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52(4):662-668.
  • Referans48. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J. Coll. Interface Sci. 2004;275(1):177-182.
  • Referans49. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18(17):6679-6686.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Salih Durdu 0000-0002-6288-0926

Publication Date January 1, 2019
Published in Issue Year 2019 Volume: 20 Issue: 1

Cite

AMA Durdu S. Characterization and Investigation of Biological Properties of Ag-Doped TiO2 Coatings Fabricated on Titanium. Estuscience - Se. January 2019;20(1):17-33. doi:10.18038/aubtda.474928