Research Article
BibTex RIS Cite

STRUCTURAL ANALYSIS AND ORBITAL INTERACTIONS OF PROLINE

Year 2019, Volume: 20 , 99 - 104, 16.12.2019
https://doi.org/10.18038/estubtda.642332

Abstract

In this work, proline (Pro) was studied theoretically at the Density
Functional Theory (DFT) methods with B3LYP/6-311++G(d,p) level and four
conformers with minimum energy were found. The calculations were done for these
conformers. Electronic energies, Gibbs energies, the Highest Occupied Molecular
Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy values
were calculated. The Natural Bond Orbital (NBO) interactions were analyzed, and
plotted. Electron density surfaces of the selected NBOs for Pro conformers showing the dominant
orbital interactions, calculated at the Becke3LYP/6-311++G(d,p) level, were
drawn. For Pro conformers, orbital
energies for NBO pairs were calculated by Fock matrix equation.

Supporting Institution

Eskisehir Technical University

Project Number

19ADP143

Thanks

This work was supported by Eskisehir Technical University Commission of Research Project under Grant no. 19ADP143.

References

  • [1] Wagner I, Musso H. New Naturally Occurring Amino Acids. Angew Chem Int Ed Engl 1983; 22 (11): 816–828.
  • [2] Michalski MC, Januel C. Does homogenization affect the human health properties of cow's milk?. Trends Food Sci Technol 2006; 17: 423–437.
  • [3] E-Dalatony MM, Saha S, Govindwar SP, A-Shanab RAI, Jeon BH. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol. 2019; 37: 855–869.
  • [4] Dennington R, Keith T, Millam J. Gauss View, Version 5. Semichem Inc, Shawnee Mission, 2009.
  • [5] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.0.2. Gaussian Inc, Wallingford CT, 2009.
  • [6] Becke A. D. 1988, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A 38, 3098–3100.
  • [7] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785–789.
  • [8] Reed A E, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988; 88: 899–926.
  • [9] Weinhold F, Landis CR. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press: New York, 2005.
  • [10] Kuş N, Ai Y-J, Fang W-H, Fausto R. Photorotamerization of matrix-isolated acrylic acid revisited. J Chem Phys 2011; 134: 154306.
Year 2019, Volume: 20 , 99 - 104, 16.12.2019
https://doi.org/10.18038/estubtda.642332

Abstract

Project Number

19ADP143

References

  • [1] Wagner I, Musso H. New Naturally Occurring Amino Acids. Angew Chem Int Ed Engl 1983; 22 (11): 816–828.
  • [2] Michalski MC, Januel C. Does homogenization affect the human health properties of cow's milk?. Trends Food Sci Technol 2006; 17: 423–437.
  • [3] E-Dalatony MM, Saha S, Govindwar SP, A-Shanab RAI, Jeon BH. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol. 2019; 37: 855–869.
  • [4] Dennington R, Keith T, Millam J. Gauss View, Version 5. Semichem Inc, Shawnee Mission, 2009.
  • [5] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.0.2. Gaussian Inc, Wallingford CT, 2009.
  • [6] Becke A. D. 1988, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A 38, 3098–3100.
  • [7] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785–789.
  • [8] Reed A E, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988; 88: 899–926.
  • [9] Weinhold F, Landis CR. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press: New York, 2005.
  • [10] Kuş N, Ai Y-J, Fang W-H, Fausto R. Photorotamerization of matrix-isolated acrylic acid revisited. J Chem Phys 2011; 134: 154306.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Saliha Ilıcan 0000-0003-4064-4364

Nihal Kuş This is me 0000-0003-4162-7152

Project Number 19ADP143
Publication Date December 16, 2019
Published in Issue Year 2019 Volume: 20

Cite

AMA Ilıcan S, Kuş N. STRUCTURAL ANALYSIS AND ORBITAL INTERACTIONS OF PROLINE. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. December 2019;20:99-104. doi:10.18038/estubtda.642332