Research Article
BibTex RIS Cite

THE EFFECT OF COLEMANITE ADDITION ON THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF IPP

Year 2020, Volume: 21 , 28 - 39, 27.11.2020
https://doi.org/10.18038/estubtda.818451

Abstract

The objective of this study was to investigate the effect of the addition of the colemanite having 45µm size on the significant characteristic features of the isotactic polypropylene (IPP). The microstructural properties (diffraction pattern, a,b and c unit cell parameters and grain size) and mechanical behaviors (tensile strength, Young's Modulus, impact strength and percent elongation of the samples relative to the colemanite content (5, 10, 15, 20 and 30 wt.%) were studied in details. The optimum amount of colemanite was determined in order to obtain IPP based composites having the improved properties. The obtained samples were characterized by using XRD and conventional mechanical tests. The results showed that the content level of the colemanite considerably affected to the fundamental properties of IPP. As for microstuructural properties, it was observed from the XRD patterns that all composite samples mainly showed only α form (monoclinic arrangement) in the crystalline domains without any β form (hexagonal arrangements). Moreover, the finding revealed that a and b the unit cell parameters of IPP based composites increased initially, reached the maximum values with the products containing 10% of colemanite, and then the consistent decrement trend was observed with the further increasing of the colemanite content in the products. Conversely, c unit cell parameter almost remained relatively unchanged. Furthermore, the mechanical test measurements depicted that the reinforcements were achieved in the tensile, Modulus and impact strengths of the composite materilas, while the percent elongation of the products decreased with the increasing of the colemanite content. 7.4%, 24.9% and 6.7% increases were recorded in the tensile strength, Modulus and impact strength at the product with 10% colemanite, respectively. The improvements was probably stemmed from that the presence of micro size colemanite particles gave rise to increment in the orientations and alignments of IPP chain in the matrix.

Supporting Institution

Department of Chemistry at Bolu Abant Izzet Baysal University

Thanks

This work was supported by Bolu Abant Izzet Baysal University, Department of Chemistry. Moreover, the authors send sincere thanks to Eti Mining Operations General Directorate in Turkey for their help to be supplied the colemanite minerals. Furthermore, the authors thanks to Seha TİRKES form Middle East Technical University and Fırat KARABOĞA from Bolu Abant Izzet Baysal University for giving the permission to use mechanical tests instruments and XRD, respectively.

References

  • [1] Afzal A, Siddiqi HM, Sarwar S, Rubab Z, Mujahid A. Polymer-particulate composites with differential interfaces: synthesis, characterization, and mathematical modeling to evaluate interface-yield strength correlations. Colloid Polym Sci 2019; 297(4):545-556.
  • [2] Broitman E. Advances in science and technology of polymers and composite materials. E-Polymers 2018;18(1): 1-1.
  • [3] Oztoprak N, Gunes MD, Tanoglu M, Aktas E, Egilmez OO, Senocak C, Kulac G, Developing polymer composite-based leaf spring systems for automotive industry. Sci Eng Compos Mater 2018; 25(6): 1167-1176.
  • [4] Tijani SA, Al-Hadeethi Y. The use of isophthalic-bismuth polymer composites as radiation shielding barriers in nuclear medicine. Mater Res Express 2019;6(5).
  • [5] Martinez-Barrera G, Gencel O, Reis JML. Civil Engineering Applications of Polymer Composites, Int J Polym Sci. 2016.
  • [6] Lozano LM, Hong SD, Huang Y, Zandavi H, El Aoud YA, Tsurimaki Y, Zhou JW, Xu Y, Osgood RM, Chen G, Boriskina SV. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt Mater Express 2019;9(5):1990-2005.
  • [7] Morishita T, Matsushita M, Katagiri Y, Fukumori K. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 2011; 21(48):19412-19412.
  • [8] Ashori A. Nonwood fibers - a potential source of raw material in papermaking. Polym-Plast Technol 2006; 45(10):1133-1136.
  • [9] Bilogurova L, Shevtsova M, Investigation of the improvement of the physical and mechanical properties of polymer composite materials with nano-sized powders. Materialwiss Werkst 2009;40(4) :331-333.
  • [10] Fejdys M, Landwijt M, Kucharska-Jastrzabek A, Struszczyk MH. The effect of processing conditions on the performance of UHMWPE-fibre reinforced polymer matrix composites. Fibres Text East Eur 2016; 24(4):112-120.
  • [11] Chiang CL, Yang JM, Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites. Novel Fire Retardant Polymers and Composite Materials 2017; 73:295-312.
  • [12] Melo JDD, Dos Santos EA. Mechanical and microstructural evaluation of polymer matrix composites filled with recycled ındustrial waste. J Reinf Plast Comp 2009; 28(20):2459-2471.
  • [13] Suzuki N, Zakaria MB, Chiang YD, Wu KCW, Yamauchi Y. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys Chem Chem Phys 20212;14(20):7427-7432.
  • [14] Devnani GL, Inha S. Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Mater Today-Proc 2019;18:647-654.
  • [15] Mehta IK, Kumar S, Chauhan GS, Misra BN. Grafting onto isotactic polypropylene .3. gamma-rays induced graft-copolymerization of water-soluble vinyl monomers. J Appl Polym Sci 1990;41(5-6):1171-1180.
  • [16] Rao GSS, Choudhary MS, Naqvi MK, Rao KV. Functionalization of isotactic polypropylene with acrylic acid in the melt: synthesis, characterization and evaluation of thermomechanical properties. Eur Polym J 1996; 32(6);695-700.
  • [17] Wang B, Yang D, Zhang HR, Huang C, Xiong L, Luo J, Chen XD. Preparation of esterified bacterial cellulose for improved mechanical properties and the microstructure of isotactic polypropylene/bacterial cellulose composites. Polymers-Basel 2016;8(4).
  • [18] Li QT, Zheng GQ, Dai K, Xie MC, Liu CT, Liu BC, Zhang XL, Wang B, Chen JB, Shen CY, Li Q, Peng XF. Beta-transcrystallinity developed from the novel ringed nuclei in the glass fiber/isotactic polypropylene composite. Mater Lett 2011;65(14):2274-2277.
  • [19] Huang SL, Liu ZY, Zheng SD, Yang MB. Enhancing the conductivity of isotactic polypropylene/polyethylene/carbon black composites by oscillatory shear. Colloid Polym Sci 2013; 291(12):3005-3011.
  • [20] Dutt K, Soni RK, Singh H. Thermal stability and crystallization behavior of TER blends of isotactic polypropylene (iPP)/ethylene-propylenediene rubber (EPDM)/nitrile rubber (NBR). Int J Polym Mater 2012;61(11):864-881.
  • [21] Mi DS, La RX, Chen WW, Zhang J. Different kinds of transcrystallinity developed from glass fiber/isotactic polypropylene/-nucleation agents composite by microinjection molding. Polym Advan Technol 2016;27(9):1220-1227.
  • [22] Ghahramani N, Esfahani SAS, Mehranpour M, Nazockdast H. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride. J Mater Sci 2018;53(23):16146-16159.
  • [23] Yadav V, Kulshrestha V. Boron nitride: a promising material for proton exchange membranes for energy applications. Nanoscale 2019;11(27):12755-12773.
  • [24] Shireen F, Nawaz MA, Chen C, Zhang QK, Zheng ZH, Sohail H, Sun JY, Cao HS, Huang Y, Bie, ZL. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci 2018;19(7) .
  • [25] Sorensen SS, Johra H, Mauro JC, Bauchy M, Smedskjaer MM. Boron anomaly in the thermal conductivity of lithium borate glasses. Phys Rev Mater 2019;3(7).
  • [26] Qaid SAS, Alzayed NS, Shahabuddin M, Ramay S, Madhar NA. Comparing the superconducting performance of nC, B4C, and sucrose doped MgB2. Physica C 2020;568.
  • [27] Guzel G, Sivrikaya O, Deveci H. The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties. Compos Part B-Eng 2016;100:1-9.
  • [28] Chan-Hom T, Yamsaengsung W, Prapagdee B, Markpin T, Sombatsompop N. Flame retardancy, antifungal efficacies, and physical-mechanical properties for wood/polymer composites containing zinc borate. Fire Mater 2017;41(6):675-687.
  • [29] Baysal E, Yalinkilic MK, Altinok M, Sonmez A, Peker H, Colak M. Some physical, wood polymer biological, mechanical, and fire properties of composite (WPC) pretreated with boric acid and borax mixture. Constr Build Mater 2017;21(9):1879-1885.
  • [30] Kuru D, Borazan AA, Guru M. Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Manage Res 2018;36(11):1029-1036.
  • [31] Kurt R, Mengeloglu F, Meric H. The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites. Eur J Wood Wood Prod 2012;70(1-3):177-182.
  • [32] Guldas A, Gullu A, Cankaya A. Determination of the rheological properties of polypropylene filled with colemanite. Polym Advan Technol 2017;28(9):1179-1184.
  • [33] Isitman NA, Kaynak C. Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene. J Fire Sci 2013;31(1):73-84.
  • [34] Atikler U, Demir H, Tokatli F, Tihminlioglu F, Balkose D, Ulku S. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system. Polym Degrad Stabil 2006;91(7):1563-1570.
  • [35] Sahin T. Mechanical and thermal properties of colemanite filled polypropylene. Kgk-Kaut Gummi Kunst 2011;64(9):16-21.
  • [36] Sen F, Madakbas S, Basturk E, Kahraman MV. Morphology and mechanical properties of thermoplastic polyurethane/colemanite composites, Polym-Korea 2017;41(6):1019-1026.
  • [37] Soykan U, Cetin S. Reinforcement of high density polyethylene with a side chain LCP by graft copolymerization-thermal, mechanical and morphological properties. J Polym Res 2015;22(11).
  • [38] Yang BX, Shi JH, Pramoda KP, Goh SH. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos Sci Technol 2008; 68(12):2490-2497.
  • [39] Fereidoon A, Ahangari MG, Saedodin S. Thermal and structural behaviors of polypropylene nanocomposites reinforced with single-walled carbon nanotubes by melt processing method. J Macromol Sci B 2009;48(1):196-211.
  • [40] Moly KA, Radusch HJ, Androsch R, Bhagawan SS, Thomas S. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. Eur Polym J 2005;41(6):1410-1419.
  • [41] Ersoy OG, Nugay N. Effect of inorganic filler phase on mechanical and morphological properties of binary immiscible polymer blends. Polym Bull 2003, 49(6):465-472.
  • [42] Hamizah AS, Mariatti M, Othman R, Kawashita M, Hayati ARN. Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers. J Appl Polym Sci 2012;125:E661-E669.
  • [43] Pustak A, Denac A, Leskovac M, Svab I, Musil V, Smit I. Morphology and mechanical properties of iPP/silica composites modified with (styrene-b-ethylene-co-butylene-b-styrene) grafted with maleic anhydride. Polym-Plast Technol 2015;54(6):647-660.
Year 2020, Volume: 21 , 28 - 39, 27.11.2020
https://doi.org/10.18038/estubtda.818451

Abstract

References

  • [1] Afzal A, Siddiqi HM, Sarwar S, Rubab Z, Mujahid A. Polymer-particulate composites with differential interfaces: synthesis, characterization, and mathematical modeling to evaluate interface-yield strength correlations. Colloid Polym Sci 2019; 297(4):545-556.
  • [2] Broitman E. Advances in science and technology of polymers and composite materials. E-Polymers 2018;18(1): 1-1.
  • [3] Oztoprak N, Gunes MD, Tanoglu M, Aktas E, Egilmez OO, Senocak C, Kulac G, Developing polymer composite-based leaf spring systems for automotive industry. Sci Eng Compos Mater 2018; 25(6): 1167-1176.
  • [4] Tijani SA, Al-Hadeethi Y. The use of isophthalic-bismuth polymer composites as radiation shielding barriers in nuclear medicine. Mater Res Express 2019;6(5).
  • [5] Martinez-Barrera G, Gencel O, Reis JML. Civil Engineering Applications of Polymer Composites, Int J Polym Sci. 2016.
  • [6] Lozano LM, Hong SD, Huang Y, Zandavi H, El Aoud YA, Tsurimaki Y, Zhou JW, Xu Y, Osgood RM, Chen G, Boriskina SV. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt Mater Express 2019;9(5):1990-2005.
  • [7] Morishita T, Matsushita M, Katagiri Y, Fukumori K. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 2011; 21(48):19412-19412.
  • [8] Ashori A. Nonwood fibers - a potential source of raw material in papermaking. Polym-Plast Technol 2006; 45(10):1133-1136.
  • [9] Bilogurova L, Shevtsova M, Investigation of the improvement of the physical and mechanical properties of polymer composite materials with nano-sized powders. Materialwiss Werkst 2009;40(4) :331-333.
  • [10] Fejdys M, Landwijt M, Kucharska-Jastrzabek A, Struszczyk MH. The effect of processing conditions on the performance of UHMWPE-fibre reinforced polymer matrix composites. Fibres Text East Eur 2016; 24(4):112-120.
  • [11] Chiang CL, Yang JM, Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites. Novel Fire Retardant Polymers and Composite Materials 2017; 73:295-312.
  • [12] Melo JDD, Dos Santos EA. Mechanical and microstructural evaluation of polymer matrix composites filled with recycled ındustrial waste. J Reinf Plast Comp 2009; 28(20):2459-2471.
  • [13] Suzuki N, Zakaria MB, Chiang YD, Wu KCW, Yamauchi Y. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys Chem Chem Phys 20212;14(20):7427-7432.
  • [14] Devnani GL, Inha S. Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Mater Today-Proc 2019;18:647-654.
  • [15] Mehta IK, Kumar S, Chauhan GS, Misra BN. Grafting onto isotactic polypropylene .3. gamma-rays induced graft-copolymerization of water-soluble vinyl monomers. J Appl Polym Sci 1990;41(5-6):1171-1180.
  • [16] Rao GSS, Choudhary MS, Naqvi MK, Rao KV. Functionalization of isotactic polypropylene with acrylic acid in the melt: synthesis, characterization and evaluation of thermomechanical properties. Eur Polym J 1996; 32(6);695-700.
  • [17] Wang B, Yang D, Zhang HR, Huang C, Xiong L, Luo J, Chen XD. Preparation of esterified bacterial cellulose for improved mechanical properties and the microstructure of isotactic polypropylene/bacterial cellulose composites. Polymers-Basel 2016;8(4).
  • [18] Li QT, Zheng GQ, Dai K, Xie MC, Liu CT, Liu BC, Zhang XL, Wang B, Chen JB, Shen CY, Li Q, Peng XF. Beta-transcrystallinity developed from the novel ringed nuclei in the glass fiber/isotactic polypropylene composite. Mater Lett 2011;65(14):2274-2277.
  • [19] Huang SL, Liu ZY, Zheng SD, Yang MB. Enhancing the conductivity of isotactic polypropylene/polyethylene/carbon black composites by oscillatory shear. Colloid Polym Sci 2013; 291(12):3005-3011.
  • [20] Dutt K, Soni RK, Singh H. Thermal stability and crystallization behavior of TER blends of isotactic polypropylene (iPP)/ethylene-propylenediene rubber (EPDM)/nitrile rubber (NBR). Int J Polym Mater 2012;61(11):864-881.
  • [21] Mi DS, La RX, Chen WW, Zhang J. Different kinds of transcrystallinity developed from glass fiber/isotactic polypropylene/-nucleation agents composite by microinjection molding. Polym Advan Technol 2016;27(9):1220-1227.
  • [22] Ghahramani N, Esfahani SAS, Mehranpour M, Nazockdast H. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride. J Mater Sci 2018;53(23):16146-16159.
  • [23] Yadav V, Kulshrestha V. Boron nitride: a promising material for proton exchange membranes for energy applications. Nanoscale 2019;11(27):12755-12773.
  • [24] Shireen F, Nawaz MA, Chen C, Zhang QK, Zheng ZH, Sohail H, Sun JY, Cao HS, Huang Y, Bie, ZL. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci 2018;19(7) .
  • [25] Sorensen SS, Johra H, Mauro JC, Bauchy M, Smedskjaer MM. Boron anomaly in the thermal conductivity of lithium borate glasses. Phys Rev Mater 2019;3(7).
  • [26] Qaid SAS, Alzayed NS, Shahabuddin M, Ramay S, Madhar NA. Comparing the superconducting performance of nC, B4C, and sucrose doped MgB2. Physica C 2020;568.
  • [27] Guzel G, Sivrikaya O, Deveci H. The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties. Compos Part B-Eng 2016;100:1-9.
  • [28] Chan-Hom T, Yamsaengsung W, Prapagdee B, Markpin T, Sombatsompop N. Flame retardancy, antifungal efficacies, and physical-mechanical properties for wood/polymer composites containing zinc borate. Fire Mater 2017;41(6):675-687.
  • [29] Baysal E, Yalinkilic MK, Altinok M, Sonmez A, Peker H, Colak M. Some physical, wood polymer biological, mechanical, and fire properties of composite (WPC) pretreated with boric acid and borax mixture. Constr Build Mater 2017;21(9):1879-1885.
  • [30] Kuru D, Borazan AA, Guru M. Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Manage Res 2018;36(11):1029-1036.
  • [31] Kurt R, Mengeloglu F, Meric H. The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites. Eur J Wood Wood Prod 2012;70(1-3):177-182.
  • [32] Guldas A, Gullu A, Cankaya A. Determination of the rheological properties of polypropylene filled with colemanite. Polym Advan Technol 2017;28(9):1179-1184.
  • [33] Isitman NA, Kaynak C. Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene. J Fire Sci 2013;31(1):73-84.
  • [34] Atikler U, Demir H, Tokatli F, Tihminlioglu F, Balkose D, Ulku S. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system. Polym Degrad Stabil 2006;91(7):1563-1570.
  • [35] Sahin T. Mechanical and thermal properties of colemanite filled polypropylene. Kgk-Kaut Gummi Kunst 2011;64(9):16-21.
  • [36] Sen F, Madakbas S, Basturk E, Kahraman MV. Morphology and mechanical properties of thermoplastic polyurethane/colemanite composites, Polym-Korea 2017;41(6):1019-1026.
  • [37] Soykan U, Cetin S. Reinforcement of high density polyethylene with a side chain LCP by graft copolymerization-thermal, mechanical and morphological properties. J Polym Res 2015;22(11).
  • [38] Yang BX, Shi JH, Pramoda KP, Goh SH. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos Sci Technol 2008; 68(12):2490-2497.
  • [39] Fereidoon A, Ahangari MG, Saedodin S. Thermal and structural behaviors of polypropylene nanocomposites reinforced with single-walled carbon nanotubes by melt processing method. J Macromol Sci B 2009;48(1):196-211.
  • [40] Moly KA, Radusch HJ, Androsch R, Bhagawan SS, Thomas S. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. Eur Polym J 2005;41(6):1410-1419.
  • [41] Ersoy OG, Nugay N. Effect of inorganic filler phase on mechanical and morphological properties of binary immiscible polymer blends. Polym Bull 2003, 49(6):465-472.
  • [42] Hamizah AS, Mariatti M, Othman R, Kawashita M, Hayati ARN. Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers. J Appl Polym Sci 2012;125:E661-E669.
  • [43] Pustak A, Denac A, Leskovac M, Svab I, Musil V, Smit I. Morphology and mechanical properties of iPP/silica composites modified with (styrene-b-ethylene-co-butylene-b-styrene) grafted with maleic anhydride. Polym-Plast Technol 2015;54(6):647-660.
There are 43 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Uğur Soykan 0000-0002-9244-026X

Fidan Valiyeva 0000-0003-0170-2381

Publication Date November 27, 2020
Published in Issue Year 2020 Volume: 21

Cite

AMA Soykan U, Valiyeva F. THE EFFECT OF COLEMANITE ADDITION ON THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF IPP. Estuscience - Se. November 2020;21:28-39. doi:10.18038/estubtda.818451