Research Article
PDF EndNote BibTex RIS Cite

HIGH BRIGHTNESS 1908nm TM-DOPED FIBER LASER WITH POWER SCALING TO >75W

Year 2022, Volume 23, Issue 3, 216 - 222, 27.09.2022
https://doi.org/10.18038/estubtda.1072801

Abstract

References

  • [1] DJ Richardson, Nilsson J, and Clarkson WA. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 2010; 27 B63–B92.
  • [2] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R and Tunnermann A. The rising power of fiber lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron 2007; 13:537–545.
  • [3] Nilsson J, Ramachandran S, Shay TM and Shirakawa A. Introduction to issue of high power fiber lasers. IEEE J. Sel. Top. Quantum Electron 2009; 15: 1–2. [4] Zając A, Dorosz D, Kochanowicz M, Skórczakowski M and Świderski J. Fiber lasers conditioning constructional and technological. Bull. Pol. Ac. Tech 2010; 58: 491–502.
  • [5] Russell J. De Young and Norman P. Barnes. Profiling atmospheric water vapor using a fiber laser LIDAR system. Appl. Opt 2010; 49: 562-567.
  • [6] Mingareev I, Weirauch, F, Olowinsky A, Shah L, Kadwani P and Richardson M. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology 2012; 44: 2095–2099
  • [7] Kang HW, Lee H, Petersen J, Teichman J H and Welch A. J. Investigation of stone retropulsion as a function of Ho: YAG Laser pulse duration. Proc. SPIE 2006; 6078: Photonic Therapeutics and Diagnostics II 607815.
  • [8] Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ. Temperature dependence of the absorption coefficient of water for mid infrared laser radiation. Lasers in Surgery and Medicine 1994; 14: 258.
  • [9] Budni PA, Pomeranz LA, Lemons ML, Miller CA, Mosto JR and Chicklis EP. Efficient mid-infrared laser using 1.9-µm-pumped Ho: YAG and ZnGeP2 optical parametric oscillators. J. Opt. Soc. Am. B 2000; 17: 723-728.
  • [10] Kwiatkowski J, Jabczynski J K, Zendzian W, Swiderski J, Kaskow M and Gorajek L. A highly efficient resonantly pumped Ho: YAG laser. Proc. SPIE 2012; 8433: Laser Sources and Applications 84331J-1.
  • [11] Nicolas Dalloz, Thierry Robin, Benoît Cadier, Christelle Kieleck, Marc Eichhorn, and Anne Hildenbrand-Dhollande. High power Q-switched Tm3+, Ho3+- co-doped 2μm fiber laser and application for direct OPO pumping. Proc. SPIE 2019; 10897: Fiber Lasers XVI: Technology and Systems 108970J.
  • [12] Ramírez-Martínez NJ, Núñez-Velázquez M, Umnikov AA and Sahu JK. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express 2019; 27: 196-201.
  • [13] Ehrenreich T, Leveille R, Majid I and Tankala K. 1 kW, all-glass Tm: fiber lasers. SPIE Photonics West 2010; Fiber Lasers VII: Technology, Systems and Applications.
  • [14] Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B and Carter A. Tm-Doped Fiber Lasers: Fundamentals and Power Scaling. IEEE J. Sel. Top. Quantum Electron 2009; 15: 85.
  • [15] Samson B, Carter A, Tankala K, Majid I, Dong L and Hemming A. New fiber developments for amplifiers operating at 1μm and 2μm. SPIE Security + Defense 2013; 8898-29.
  • [16] Till Walbaum, Matthias Heinzberg, Andreas Liem, Thomas Schreiber, Ramona Eberhardt, Andreas Tunnermann. Optimization of a diode-pumped thulium fiber laser with a monolithic cavity towards 278W and 1967nm. ASSL 2015.
  • [17] Hemming A, Simmakov N, Davidson A, Stepanov D, Corena L, Hughes M, Carmodh N, Davies P, Haub J, Carter A. An Efficient, Monolithic, Single Mode Thulium Fiber Laser. Workshop on Sp. Opt. Fibers., OSA 2013; Paper T2.4.
  • [18] Zhou R L, Ju Y L, Zhao J, Yang C and Wang Y Z. A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser. Chin. Phys. B 2013; 22: 064208.
  • [19] Frith G, Carter A, Samson B, Farroni J, Farley K and Tankala K. Highly efficient 70W all-fiber Tm-doped laser system operating at 1908nm. OECC/ACOFT 2008; pp: 1-2.
  • [20] Bennetts S, Hemming A, Davidson A and Lancaster DG. 110W 790nm pumped 1908nm thulium fiber laser. OECC/ACOFT 2008; pp: 1-2.
  • [21] Hu Zhen-Yue, Yan Ping, Xiao Qi-Rong, Liu Qiang, Gong Ma-Li. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm. Chin. Phys. B 2014; 23: 104206.
  • [22] Benjamin R. Johnson, Creeden D, Limongelli J, Pretorius H, Blanchard J, and Setzler S.D. Comparison of high power large mode area and single mode 1908nm Tm-doped fiber lasers. Proc. SPIE, Fiber Lasers XIII: Technology, Systems, and Applications 2016; 9728-972810.

HIGH BRIGHTNESS 1908nm TM-DOPED FIBER LASER WITH POWER SCALING TO >75W

Year 2022, Volume 23, Issue 3, 216 - 222, 27.09.2022
https://doi.org/10.18038/estubtda.1072801

Abstract

In this paper, we have studied monolithic diode-pumped Tm-doped fiber laser to be used as a pump source for Ho-YAG systems. The cavity is designed to achieve high optical-to-optical efficiency and robustness against amplified spontaneous emission (ASE) induced parasitic lasing via optimizing the doped fiber length and cavity parameters. Experimentally, we have demonstrated 1907.7 nm fiber laser with an output power of 79 W from 10/130 μm Tm-doped double clad fiber, enabling high brightness and radiance density as well. The laser cavity has a slope efficiency of ~55%, ASE suppression of > 40 dB and a near-diffraction-limited beam quality of M2~1.07.

References

  • [1] DJ Richardson, Nilsson J, and Clarkson WA. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 2010; 27 B63–B92.
  • [2] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R and Tunnermann A. The rising power of fiber lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron 2007; 13:537–545.
  • [3] Nilsson J, Ramachandran S, Shay TM and Shirakawa A. Introduction to issue of high power fiber lasers. IEEE J. Sel. Top. Quantum Electron 2009; 15: 1–2. [4] Zając A, Dorosz D, Kochanowicz M, Skórczakowski M and Świderski J. Fiber lasers conditioning constructional and technological. Bull. Pol. Ac. Tech 2010; 58: 491–502.
  • [5] Russell J. De Young and Norman P. Barnes. Profiling atmospheric water vapor using a fiber laser LIDAR system. Appl. Opt 2010; 49: 562-567.
  • [6] Mingareev I, Weirauch, F, Olowinsky A, Shah L, Kadwani P and Richardson M. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology 2012; 44: 2095–2099
  • [7] Kang HW, Lee H, Petersen J, Teichman J H and Welch A. J. Investigation of stone retropulsion as a function of Ho: YAG Laser pulse duration. Proc. SPIE 2006; 6078: Photonic Therapeutics and Diagnostics II 607815.
  • [8] Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ. Temperature dependence of the absorption coefficient of water for mid infrared laser radiation. Lasers in Surgery and Medicine 1994; 14: 258.
  • [9] Budni PA, Pomeranz LA, Lemons ML, Miller CA, Mosto JR and Chicklis EP. Efficient mid-infrared laser using 1.9-µm-pumped Ho: YAG and ZnGeP2 optical parametric oscillators. J. Opt. Soc. Am. B 2000; 17: 723-728.
  • [10] Kwiatkowski J, Jabczynski J K, Zendzian W, Swiderski J, Kaskow M and Gorajek L. A highly efficient resonantly pumped Ho: YAG laser. Proc. SPIE 2012; 8433: Laser Sources and Applications 84331J-1.
  • [11] Nicolas Dalloz, Thierry Robin, Benoît Cadier, Christelle Kieleck, Marc Eichhorn, and Anne Hildenbrand-Dhollande. High power Q-switched Tm3+, Ho3+- co-doped 2μm fiber laser and application for direct OPO pumping. Proc. SPIE 2019; 10897: Fiber Lasers XVI: Technology and Systems 108970J.
  • [12] Ramírez-Martínez NJ, Núñez-Velázquez M, Umnikov AA and Sahu JK. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express 2019; 27: 196-201.
  • [13] Ehrenreich T, Leveille R, Majid I and Tankala K. 1 kW, all-glass Tm: fiber lasers. SPIE Photonics West 2010; Fiber Lasers VII: Technology, Systems and Applications.
  • [14] Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B and Carter A. Tm-Doped Fiber Lasers: Fundamentals and Power Scaling. IEEE J. Sel. Top. Quantum Electron 2009; 15: 85.
  • [15] Samson B, Carter A, Tankala K, Majid I, Dong L and Hemming A. New fiber developments for amplifiers operating at 1μm and 2μm. SPIE Security + Defense 2013; 8898-29.
  • [16] Till Walbaum, Matthias Heinzberg, Andreas Liem, Thomas Schreiber, Ramona Eberhardt, Andreas Tunnermann. Optimization of a diode-pumped thulium fiber laser with a monolithic cavity towards 278W and 1967nm. ASSL 2015.
  • [17] Hemming A, Simmakov N, Davidson A, Stepanov D, Corena L, Hughes M, Carmodh N, Davies P, Haub J, Carter A. An Efficient, Monolithic, Single Mode Thulium Fiber Laser. Workshop on Sp. Opt. Fibers., OSA 2013; Paper T2.4.
  • [18] Zhou R L, Ju Y L, Zhao J, Yang C and Wang Y Z. A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser. Chin. Phys. B 2013; 22: 064208.
  • [19] Frith G, Carter A, Samson B, Farroni J, Farley K and Tankala K. Highly efficient 70W all-fiber Tm-doped laser system operating at 1908nm. OECC/ACOFT 2008; pp: 1-2.
  • [20] Bennetts S, Hemming A, Davidson A and Lancaster DG. 110W 790nm pumped 1908nm thulium fiber laser. OECC/ACOFT 2008; pp: 1-2.
  • [21] Hu Zhen-Yue, Yan Ping, Xiao Qi-Rong, Liu Qiang, Gong Ma-Li. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm. Chin. Phys. B 2014; 23: 104206.
  • [22] Benjamin R. Johnson, Creeden D, Limongelli J, Pretorius H, Blanchard J, and Setzler S.D. Comparison of high power large mode area and single mode 1908nm Tm-doped fiber lasers. Proc. SPIE, Fiber Lasers XIII: Technology, Systems, and Applications 2016; 9728-972810.

Details

Primary Language English
Subjects Engineering, Basic Sciences
Journal Section Articles
Authors

Salih Kağan KALYONCU> (Primary Author)
TUBİTAK
0000-0002-5811-4815
Türkiye

Publication Date September 27, 2022
Published in Issue Year 2022, Volume 23, Issue 3

Cite

AMA Kalyoncu S. K. HIGH BRIGHTNESS 1908nm TM-DOPED FIBER LASER WITH POWER SCALING TO >75W. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. 2022; 23(3): 216-222.