Research Article
BibTex RIS Cite

NONIC B-SPLINE APPROACH FOR ADVECTION DIFFUSION EQUATION

Year 2023, Volume: 24 Issue: 2, 155 - 163, 21.06.2023
https://doi.org/10.18038/estubtda.1209564

Abstract

References

  • [1] Dehghan M. Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 2004; 147: 307-319.
  • [2] Sari M, Güraslan G, Zeytinoglu A. High-Order finite difference schemes for solving the advection-diffusion equation. Math Comput Appl 2010; 15 (3): 449-460.
  • [3] Mohebbi A, Dehghan M. High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl Math Model 2010; 34: 3071-3084.
  • [4] Dağ İ, Irk D, Tombul M. Least-squares finite element method for the advection diffusion equation. Appl Math Comput 2006; 173: 554-565.
  • [5] Dağ İ, Canıvar A, Şahin A. Taylor-Galerkin method for advection-diffusion equation. Kybernetes 2011; 40: 762-777. [6] Korkmaz A, Dağ İ. Cubic B-spline differential quadrature methods for the advection-diffusion equation. Int J Numer Method H, 2012; 22:1021-1036.
  • [7] Irk D, Dağ İ, Tombul M. Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering 2015; 19(4): 929-934.
  • [8] Korkmaz A, Dağ İ. Quartic and quintic B-spline methods for advection diffusion equation. Appl Math Comput 2016; 274: 208-219.
  • [9] Zorşahin Görgülü M, Dağ İ, Dogan S, Irk D. A numerical solution of the Advection-Diffusion equation by using extended cubic B-Spline functions. AUBTD-A 2018; 19(2): 347-355.
  • [10] Zorşahin Görgülü M, Irk D. The Galerkin finite element method for advection diffusion equation. Sigma J Eng & Nat Sci 2019; 37(1): 119-128.
  • [11] Mittal, RC, Rohila, R. The numerical study of advection-diffusion equations by the fourth-order cubic B-spline collocation method. Math Sci 2020; 14: 409-423.

NONIC B-SPLINE APPROACH FOR ADVECTION DIFFUSION EQUATION

Year 2023, Volume: 24 Issue: 2, 155 - 163, 21.06.2023
https://doi.org/10.18038/estubtda.1209564

Abstract

In this paper, a highly accurate method is introduced to achieve the numerical solution of the advection diffusion equation (ADE). This approach contains collocation technique based on nonic B-spline functions in the spatial-domain discretization and Adams Moulton scheme in the temporal-domain discretization. Two test problems are studied to validate effectiveness of the new presented method and efficiency of the approximate results are tested by calculating rate of temporal-convergence and error norm 𝐿∞ for the suggested method. The obtained numerical results are compared in the tables by the other available studies in literature and it is observed that a better approximate solution is provided than the existing methods.

References

  • [1] Dehghan M. Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 2004; 147: 307-319.
  • [2] Sari M, Güraslan G, Zeytinoglu A. High-Order finite difference schemes for solving the advection-diffusion equation. Math Comput Appl 2010; 15 (3): 449-460.
  • [3] Mohebbi A, Dehghan M. High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl Math Model 2010; 34: 3071-3084.
  • [4] Dağ İ, Irk D, Tombul M. Least-squares finite element method for the advection diffusion equation. Appl Math Comput 2006; 173: 554-565.
  • [5] Dağ İ, Canıvar A, Şahin A. Taylor-Galerkin method for advection-diffusion equation. Kybernetes 2011; 40: 762-777. [6] Korkmaz A, Dağ İ. Cubic B-spline differential quadrature methods for the advection-diffusion equation. Int J Numer Method H, 2012; 22:1021-1036.
  • [7] Irk D, Dağ İ, Tombul M. Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering 2015; 19(4): 929-934.
  • [8] Korkmaz A, Dağ İ. Quartic and quintic B-spline methods for advection diffusion equation. Appl Math Comput 2016; 274: 208-219.
  • [9] Zorşahin Görgülü M, Dağ İ, Dogan S, Irk D. A numerical solution of the Advection-Diffusion equation by using extended cubic B-Spline functions. AUBTD-A 2018; 19(2): 347-355.
  • [10] Zorşahin Görgülü M, Irk D. The Galerkin finite element method for advection diffusion equation. Sigma J Eng & Nat Sci 2019; 37(1): 119-128.
  • [11] Mittal, RC, Rohila, R. The numerical study of advection-diffusion equations by the fourth-order cubic B-spline collocation method. Math Sci 2020; 14: 409-423.
There are 10 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations
Journal Section Articles
Authors

Emre Kırlı 0000-0002-5704-2370

Publication Date June 21, 2023
Published in Issue Year 2023 Volume: 24 Issue: 2

Cite

AMA Kırlı E. NONIC B-SPLINE APPROACH FOR ADVECTION DIFFUSION EQUATION. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. June 2023;24(2):155-163. doi:10.18038/estubtda.1209564