THE QUANTUM MECHANICAL INVESTIGATION OF THE INTERACTIONS BETWEEN H₂SO₄ AND HNO₃ MOLECULES AND WATER CLUSTERS
Year 2025,
Volume: 26 Issue: 1, 28 - 44, 25.03.2025
Fatime Mine Balcı
Abstract
Nitric acid and sulfuric acid can form various hydrogen bonds with each other, creating stable species with water molecules. Additionally, these acid molecules are also significant from an atmospheric perspective and play an important role in atmospheric chemistry. This theoretical study focuses on the analysis of intermolecular interactions in structures obtained by scanning the potential energy surface of clusters formed by nitric acid and sulfuric acid with two and three water molecules. In the structures obtained with three water molecules, the ionic forms of these acid molecules were observed. The most stable structures energetically are those where nitric acid acts as a proton donor to sulfuric acid. The results of all the structures obtained were analyzed structurally, energetically, and spectroscopically.
Thanks
In this study, all numerical calculations were carried out entirely at the TÜBİTAK ULAKBİM High Performance and Grid Computing Center (TRUBA resources).
References
- [1] Solomon S, Garcia RR, Rowland FS, Wuebbles DJ. On the depletion of Antartic ozone. Nature 1986; 321:755–758.
- [2] Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 1999; 37 (3): 275–316.
- [3] Molina MJ, Zhang R, Wooldridge PJ, McMahon JR, Kim JE, Chang HY, Beyer KD. Physical chemistry of the H2SO4/HNO3/H2O system: implications for polar stratospheric clouds. Science 1993; 261:1418-1423.
- [4] Wegner T, Kinnison DE, Garcia RR, Solomon S. Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. J Geophys Res 2013; 118 (10):4991–5002.
- [5] Lowe D, MacKenzie AR. Polar stratospheric cloud microphysics and chemistry. JASTP 2008; 70 (1):13–40.
- [6] Finlayson-Pitts BJ., Pitts J.r JN. Chemistry of the Upper and Lower Atmosphere. 2000 Academic Press: New York.
- [7] Sipila M, Berndt T, Petaja T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin RL, Hyvarinen AP, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science 2010; 327:1243−1246.
- [8] Yu F, Turco RP. Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 2000; 27 (6):883−886.
- [9] Korhonen P, Kulmala M, Laaksonen A, Viisanen Y, McGraw R, Seinfeld JJ. Ternary nucleation of H2SO4, NH3 and H2O in the atmosphere. J Geophys Res 1999; 104: 26349−26353.
- [10] Zhang R, Suh I, Zhao J, Zhang D, Fortner EC, Tie X, Molina LT. Atmospheric new particle formation enhanced by organic acids. Science 2004; 304:1487−1490.
- [11] Zhang R, Wooldridge PJ, Molina MJ. Vapor pressure measurements for the H2SO4/HNO3/H2O and H2SO4/HCl/H2O systems: incorporation of stratospheric acids into background sulfate aerosols. J Phys Chem A 1993; 97:8541–8548.
- [12] Tabazadeh A, Turco RP, Drdla K, Jacobson MZ. A study of type I polar stratospheric cloud formation. Geophys Res Lett 1994; 21 (15):1619–1622.
- [13] Hanson DR. Reaction of ClONO2 with H2O and HCl in sulfuric acid and HNO3/H2SO4/H2O mixtures. J Phys Chem A 1998; 102:4794–4807.
- [14] Ritzhaupt G, Devlin JP. Infrared spectra of nitric and hydrochloric acid hydrate thin films. J Phys Chem 1991; 95:90.
- [15] Tolbert MA, Middlebrook AM. Fourier transform infrared studies of model polar stratospheric cloud surfaces: Growth and evaporation of ice and nitric acid/ice. J Geophys Res 1990; 95:22423.
- [16] Barton N, Rowland B, Devlin JP. Infrared spectra of large acid hydrate clusters: Formation conditions of submicron particles of HNO3.2H2O and HNO3.3H2O. J Phys Chem 1993; 97:5848.
- [17] Escribano R, Couceiro M, Gomez PC, Carrasco E, Moreno MA, Herrero VJ. The nitric acid hydrates: ab initio molecular study, and RAIR Spectra of the Solids. J Phys Chem A 2003; 107 (5):651-661.
- [18] Fernandez-Torre D, Escribano R, Archer T, Pruneda JM, Artacho E. First-principles infrared spectrum of nitric acid and nitric acid monohydrtae crystals. J Phys Chem A 2004; 108: 10535.
- [19] Leopold KR. Hydrated Acid Clusters. Annu Rev Phys Chem 2011; 62:327-349.
- [20] Devlin JP, Uras N, Sadlej J, Buch V. Discrete stages in the solvation and ionization of hydrogen chlorie adsorbed on ice particles. Nature 2002; 417 (6886):269-271.
- [21] Buch V, Sadlej J, Aytemiz-Uras N, Devlin JP. Solvation and ionization of stages of HCl on ice nanocrystals. J Phys Chem A 2002; 106 (41):9374-9389.
- [22] Ortiz-Repiso M, Escribano R, Gomez PC. Structure and spectra of HOCl(H2O)n clusters, n = 1−4: a theoretical calculation. J Phys Chem A 2000; 104 (3):600-609.
- [23] Riikonen S, Parkkinen P, Halonen L, Gerber RB. Ionization of Nitric Acid on Crystalline Ice: The Role of Defects and Collective Proton Movement. J Phys Chem Lett 2013; 4: 1850-1855.
- [24] Dimitrova Y. Structure, stability and vibrational spectrum of the hydrogen-bonded complex between HNO3 and H2O ab initio and DFT studies. Spectrochim Acta A Mol Biomol Spectrosc 2004; 60 (1):1-8.
- [25] Tao F-M, Higgins K, Klemperer W, Nelson DD. Structure, binding energy, and equilibrium constant of the nitric acid-Water complex. Geophys Res Lett 1996; 23(14):1797-1800.
- [26] Scott JB, Wright J. Computational investigation of the solvation of nitric acid: formation of the NO3- and H3O+ ion pair. J Phys Chem A 2004; 108(47):10578-10585.
- [27] Canagaratna M, Phillips JA, Ott ME, Leopold KR. The nitric acid−water complex: Microwave Spectrum, Structure, and Tunneling. J Phys Chem A 1998; 102(9):1489-1497.
- [28] Staikova S, Donaldson DJ. Ab initio investigation of water complexes of some atmospherically important acids: HONO, HNO3 and HO2NO2. Phys Chem Chem Phys 2011; 3(11):1999-2006.
- [29] McCurdy PR, Hess WP, Xantheas SS. Nitric acid-water complexes: Theoretical calculations and comparison to experiment. J Phys Chem A 2002; 106(33):7628-7635.
- [30] Balcı FM, Uras-Aytemiz N. Interaction in the ternary complexes of HNO3···HCl···H2O: a theoretical study on energetics, structure, and spectroscopy. J Phys Chem A 2011; 115(23):5943-5954.
- [31] Kuczkowski RL, Suenram RD, Lovas FJ. Microwave spectrum, structure, and dipole moment of sulfuric acid. JACS 1981; 103:2561-2566.
- [32] Re S, Osamura Y, Morokuma K. Coexistence of Neutral and Ion-Pair Clusters of Hydrated Sulfuric Acid H2SO4(H2O)n (n =1-5)-A Molecular Orbital Study. J Phys Chem A 1999; 103:3535-3547.
- [33] Partanen L, Hanninen V, Halonen L. Ab Initio Structural and Vibrational Investigation of Sulfuric Acid Monohydrate. J Phys Chem A 2012; 116:2867−2879.
- [34] Miller Y, Chaban GM., Gerber RB. Ab Initio Vibrational Calculations for H2SO4 and H2SO4.H2O: Spectroscopy and the Nature of the Anharmonic Couplings. J Phys Chem A 2005; 109:6565-6574.
- [35] Kurten T, Sundberg MR, Vehkamaki H, Noppel M, Blomqvist J, Kulmala M. Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate. J Phys Chem A 2006; 110:7178-7188.
- [36] Bandy AR, Ianni JC. Study of the Hydrates of H2SO4 Using Density Functional Theory. J Phys Chem A 1998; 102:6533-6539.
- [37] Al Natsheh A, Nadykto AB, Mikkelsen KV, Yu F, Ruuskanen J. Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase: A DFT Investigation. J Phys Chem A 2004; 108: 8914-8929.
- [38] Balcı FM. Theoretical investigation of hydrogen bonding in the H2SO4⋯HNO3 system. Comput Theor Chem 2017; 1117:41-46.
- [39] Beichert P, Schrems O. Complexes of Sulfuric Acid with Hydrogen Chloride, Water, Nitric Acid, Chlorine Nitrate and Hydrogen Peroxide: An ab Initio Investigation. J Phys Chem A 1998; 102:10540-10544.
- [40] Balcı FM, Uras-Aytemiz N. A detailed hydrogen bonding analysis on the compositions of H2SO4/HNO3/H2O ternary systems: A computational study. J Mol Graph Model 2018; 80:272-281.
- [41] Verdes M, Paniagua M. Quantum chemical study of atmospheric aggregates: HCl.HNO3.H2SO4. J Mol Model 2014; 20:2232.
- [42] Verdes M, Paniagua M. Facet shapes and thermo-stabilities of H2SO4•HNO3 hydrates involved in polar stratospheric clouds. J Mol Model 2015; 21:238.
- [43] Frisch MJ, Trucks GW, Schlegel HB. et al., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2016.
- [44] Xantheas SS, Dunning TH. Ab initio studies of cyclic water clusters (H2O)n , n=1–6. I. Optimal structures and vibrational spectra. J Chem Phys 1993; 99:8774.
- [45] Cox A, Riveros J. Microwave Spectrum and Structure of Nitric Acid. J Chem Phys 1965; 42:3106-3112.
- [46] Benedict WS, Gailar N, Plyler EK. Rotation‐Vibration Spectra of Deuterated Water Vapor. J Chem Phys 1956; 24:1139-1165.
- [47] Zhang J, Dolg M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys 2015; 17:24173–24181.
- [48] Zhang J, Dolg M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys 2016; 18:3003–3010.
- [49] Milet A, Struniewicz C, Moszynski R. Theoretical study of the protolytic dissociation of HCl in water clusters. J Chem Phys 2011; 115:349-356.
- [50] Re S, Osamura Y, Suzuki Y, Schaefer III HF. Structures and stability of hydrated clusters of hydrogen chloride, HCl(H2O)n, n= 1–5. J Chem Phys 1998; 109:973-977.
- [51] Buch V, Milet A, Vacha R, Jungwirth P, Devlin JP, Water surface is acidic. Proc Natl Acad Sci U.S.A 2007; 104:7342-7.
- [52] Balcı FM, Uras-Aytemiz N, Gomez PC, Escribano R. Proton transfer and autoionization in HNO3HCl(H2O)n particles. Phys Chem Chem Phys 2011; 13:18145-18153.
THE QUANTUM MECHANICAL INVESTIGATION OF THE INTERACTIONS BETWEEN H₂SO₄ AND HNO₃ MOLECULES AND WATER CLUSTERS
Year 2025,
Volume: 26 Issue: 1, 28 - 44, 25.03.2025
Fatime Mine Balcı
Abstract
Nitric acid and sulfuric acid can form various hydrogen bonds with each other, creating stable species with water molecules. Additionally, these acid molecules are also significant from an atmospheric perspective and play an important role in atmospheric chemistry. This theoretical study focuses on the analysis of intermolecular interactions in structures obtained by scanning the potential energy surface of clusters formed by nitric acid and sulfuric acid with two and three water molecules. In the structures obtained with three water molecules, the ionic forms of these acid molecules were observed. The most stable structures energetically are those where nitric acid acts as a proton donor to sulfuric acid. The results of all the structures obtained were analyzed structurally, energetically, and spectroscopically.
References
- [1] Solomon S, Garcia RR, Rowland FS, Wuebbles DJ. On the depletion of Antartic ozone. Nature 1986; 321:755–758.
- [2] Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 1999; 37 (3): 275–316.
- [3] Molina MJ, Zhang R, Wooldridge PJ, McMahon JR, Kim JE, Chang HY, Beyer KD. Physical chemistry of the H2SO4/HNO3/H2O system: implications for polar stratospheric clouds. Science 1993; 261:1418-1423.
- [4] Wegner T, Kinnison DE, Garcia RR, Solomon S. Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. J Geophys Res 2013; 118 (10):4991–5002.
- [5] Lowe D, MacKenzie AR. Polar stratospheric cloud microphysics and chemistry. JASTP 2008; 70 (1):13–40.
- [6] Finlayson-Pitts BJ., Pitts J.r JN. Chemistry of the Upper and Lower Atmosphere. 2000 Academic Press: New York.
- [7] Sipila M, Berndt T, Petaja T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin RL, Hyvarinen AP, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science 2010; 327:1243−1246.
- [8] Yu F, Turco RP. Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 2000; 27 (6):883−886.
- [9] Korhonen P, Kulmala M, Laaksonen A, Viisanen Y, McGraw R, Seinfeld JJ. Ternary nucleation of H2SO4, NH3 and H2O in the atmosphere. J Geophys Res 1999; 104: 26349−26353.
- [10] Zhang R, Suh I, Zhao J, Zhang D, Fortner EC, Tie X, Molina LT. Atmospheric new particle formation enhanced by organic acids. Science 2004; 304:1487−1490.
- [11] Zhang R, Wooldridge PJ, Molina MJ. Vapor pressure measurements for the H2SO4/HNO3/H2O and H2SO4/HCl/H2O systems: incorporation of stratospheric acids into background sulfate aerosols. J Phys Chem A 1993; 97:8541–8548.
- [12] Tabazadeh A, Turco RP, Drdla K, Jacobson MZ. A study of type I polar stratospheric cloud formation. Geophys Res Lett 1994; 21 (15):1619–1622.
- [13] Hanson DR. Reaction of ClONO2 with H2O and HCl in sulfuric acid and HNO3/H2SO4/H2O mixtures. J Phys Chem A 1998; 102:4794–4807.
- [14] Ritzhaupt G, Devlin JP. Infrared spectra of nitric and hydrochloric acid hydrate thin films. J Phys Chem 1991; 95:90.
- [15] Tolbert MA, Middlebrook AM. Fourier transform infrared studies of model polar stratospheric cloud surfaces: Growth and evaporation of ice and nitric acid/ice. J Geophys Res 1990; 95:22423.
- [16] Barton N, Rowland B, Devlin JP. Infrared spectra of large acid hydrate clusters: Formation conditions of submicron particles of HNO3.2H2O and HNO3.3H2O. J Phys Chem 1993; 97:5848.
- [17] Escribano R, Couceiro M, Gomez PC, Carrasco E, Moreno MA, Herrero VJ. The nitric acid hydrates: ab initio molecular study, and RAIR Spectra of the Solids. J Phys Chem A 2003; 107 (5):651-661.
- [18] Fernandez-Torre D, Escribano R, Archer T, Pruneda JM, Artacho E. First-principles infrared spectrum of nitric acid and nitric acid monohydrtae crystals. J Phys Chem A 2004; 108: 10535.
- [19] Leopold KR. Hydrated Acid Clusters. Annu Rev Phys Chem 2011; 62:327-349.
- [20] Devlin JP, Uras N, Sadlej J, Buch V. Discrete stages in the solvation and ionization of hydrogen chlorie adsorbed on ice particles. Nature 2002; 417 (6886):269-271.
- [21] Buch V, Sadlej J, Aytemiz-Uras N, Devlin JP. Solvation and ionization of stages of HCl on ice nanocrystals. J Phys Chem A 2002; 106 (41):9374-9389.
- [22] Ortiz-Repiso M, Escribano R, Gomez PC. Structure and spectra of HOCl(H2O)n clusters, n = 1−4: a theoretical calculation. J Phys Chem A 2000; 104 (3):600-609.
- [23] Riikonen S, Parkkinen P, Halonen L, Gerber RB. Ionization of Nitric Acid on Crystalline Ice: The Role of Defects and Collective Proton Movement. J Phys Chem Lett 2013; 4: 1850-1855.
- [24] Dimitrova Y. Structure, stability and vibrational spectrum of the hydrogen-bonded complex between HNO3 and H2O ab initio and DFT studies. Spectrochim Acta A Mol Biomol Spectrosc 2004; 60 (1):1-8.
- [25] Tao F-M, Higgins K, Klemperer W, Nelson DD. Structure, binding energy, and equilibrium constant of the nitric acid-Water complex. Geophys Res Lett 1996; 23(14):1797-1800.
- [26] Scott JB, Wright J. Computational investigation of the solvation of nitric acid: formation of the NO3- and H3O+ ion pair. J Phys Chem A 2004; 108(47):10578-10585.
- [27] Canagaratna M, Phillips JA, Ott ME, Leopold KR. The nitric acid−water complex: Microwave Spectrum, Structure, and Tunneling. J Phys Chem A 1998; 102(9):1489-1497.
- [28] Staikova S, Donaldson DJ. Ab initio investigation of water complexes of some atmospherically important acids: HONO, HNO3 and HO2NO2. Phys Chem Chem Phys 2011; 3(11):1999-2006.
- [29] McCurdy PR, Hess WP, Xantheas SS. Nitric acid-water complexes: Theoretical calculations and comparison to experiment. J Phys Chem A 2002; 106(33):7628-7635.
- [30] Balcı FM, Uras-Aytemiz N. Interaction in the ternary complexes of HNO3···HCl···H2O: a theoretical study on energetics, structure, and spectroscopy. J Phys Chem A 2011; 115(23):5943-5954.
- [31] Kuczkowski RL, Suenram RD, Lovas FJ. Microwave spectrum, structure, and dipole moment of sulfuric acid. JACS 1981; 103:2561-2566.
- [32] Re S, Osamura Y, Morokuma K. Coexistence of Neutral and Ion-Pair Clusters of Hydrated Sulfuric Acid H2SO4(H2O)n (n =1-5)-A Molecular Orbital Study. J Phys Chem A 1999; 103:3535-3547.
- [33] Partanen L, Hanninen V, Halonen L. Ab Initio Structural and Vibrational Investigation of Sulfuric Acid Monohydrate. J Phys Chem A 2012; 116:2867−2879.
- [34] Miller Y, Chaban GM., Gerber RB. Ab Initio Vibrational Calculations for H2SO4 and H2SO4.H2O: Spectroscopy and the Nature of the Anharmonic Couplings. J Phys Chem A 2005; 109:6565-6574.
- [35] Kurten T, Sundberg MR, Vehkamaki H, Noppel M, Blomqvist J, Kulmala M. Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate. J Phys Chem A 2006; 110:7178-7188.
- [36] Bandy AR, Ianni JC. Study of the Hydrates of H2SO4 Using Density Functional Theory. J Phys Chem A 1998; 102:6533-6539.
- [37] Al Natsheh A, Nadykto AB, Mikkelsen KV, Yu F, Ruuskanen J. Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase: A DFT Investigation. J Phys Chem A 2004; 108: 8914-8929.
- [38] Balcı FM. Theoretical investigation of hydrogen bonding in the H2SO4⋯HNO3 system. Comput Theor Chem 2017; 1117:41-46.
- [39] Beichert P, Schrems O. Complexes of Sulfuric Acid with Hydrogen Chloride, Water, Nitric Acid, Chlorine Nitrate and Hydrogen Peroxide: An ab Initio Investigation. J Phys Chem A 1998; 102:10540-10544.
- [40] Balcı FM, Uras-Aytemiz N. A detailed hydrogen bonding analysis on the compositions of H2SO4/HNO3/H2O ternary systems: A computational study. J Mol Graph Model 2018; 80:272-281.
- [41] Verdes M, Paniagua M. Quantum chemical study of atmospheric aggregates: HCl.HNO3.H2SO4. J Mol Model 2014; 20:2232.
- [42] Verdes M, Paniagua M. Facet shapes and thermo-stabilities of H2SO4•HNO3 hydrates involved in polar stratospheric clouds. J Mol Model 2015; 21:238.
- [43] Frisch MJ, Trucks GW, Schlegel HB. et al., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2016.
- [44] Xantheas SS, Dunning TH. Ab initio studies of cyclic water clusters (H2O)n , n=1–6. I. Optimal structures and vibrational spectra. J Chem Phys 1993; 99:8774.
- [45] Cox A, Riveros J. Microwave Spectrum and Structure of Nitric Acid. J Chem Phys 1965; 42:3106-3112.
- [46] Benedict WS, Gailar N, Plyler EK. Rotation‐Vibration Spectra of Deuterated Water Vapor. J Chem Phys 1956; 24:1139-1165.
- [47] Zhang J, Dolg M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys 2015; 17:24173–24181.
- [48] Zhang J, Dolg M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys 2016; 18:3003–3010.
- [49] Milet A, Struniewicz C, Moszynski R. Theoretical study of the protolytic dissociation of HCl in water clusters. J Chem Phys 2011; 115:349-356.
- [50] Re S, Osamura Y, Suzuki Y, Schaefer III HF. Structures and stability of hydrated clusters of hydrogen chloride, HCl(H2O)n, n= 1–5. J Chem Phys 1998; 109:973-977.
- [51] Buch V, Milet A, Vacha R, Jungwirth P, Devlin JP, Water surface is acidic. Proc Natl Acad Sci U.S.A 2007; 104:7342-7.
- [52] Balcı FM, Uras-Aytemiz N, Gomez PC, Escribano R. Proton transfer and autoionization in HNO3HCl(H2O)n particles. Phys Chem Chem Phys 2011; 13:18145-18153.