Derleme
BibTex RIS Kaynak Göster

AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION

Yıl 2019, , 222 - 239, 23.08.2019
https://doi.org/10.20290/estubtdb.609899

Öz



Pharmaceutically
active compounds are gaining the recognition of emerging environmental
contaminants classified as recalcitrant bio-
accumulative compounds hence they are regarded
as toxic and hazardous chemicals. In this context, efficient treatment
processes are needed. Nanotechnology can adequately address many of the water
quality issues by using different types nanomaterials. Nano zero valent iron
(nZVI) has been
applied
to remove various organic compounds from aqueous solutions since the removal
mechanism depends on adsorption and degradation. This
article summarizes the recent knowledge of nZVI
in pharmaceutical degradation considering the key factors such as initial
contaminant concentration, dosage of bare and modified
nZVI, pH of aqueous matrix and reaction time which are mainly examined in
the experiments. Additionally, the degradation mechanism of studied
pharmaceutical compounds monitored by observing intermediates and end-products
is presented.

Kaynakça

  • [1] Mulder K, Hagens N, Fisher B. Burning water: a comparative analysis of the energy return on water invested. Ambio 2010; 391: 30-39.
  • [2] Falconer I.R, Humpage A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health 2005; 2: 43-50.
  • [3] Méndez E, González-Fuentes M.A, Rebollar-Perez G, Méndez-Albores A, Torres E. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. J Environ Sci Health, Part A 2017; 52: 235-253.
  • [4] Yahiat S, Fourcade F, Brosillon S, Amrane A. Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. Int Bio deterior Biodegradation 2011; 65: 997-1003.
  • [5] Miao XS, Koenig BG and Metcalfe CD. Analysis of AcidicDrugs in the Effluents of Sewage Treatment Plants Using Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. J Chromatogr A 2002; 952:139–147.
  • [6] Castiglioni S, Fanelli, R, Calamari D, Bagnati R and Zuccato E. Methodological Approaches for Studying Pharmaceuticals in the Environment by Comparing Predicted and Measured Concentrations in River Po, Italy. RegulToxicolPharmacol 2004; 39:25–32.
  • [7] Kolpin D.W, Furlong E.T, Meyer M.T, Thurman E.M, Zaugg S.D, Barber L.B and Buxton H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ Sci Technol 2002; 36:1202–1211.
  • [8] Ghasemian S, Nasuhoglu D, Omanovic S,Yargeau V. Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%-W20%-oxide electrodes. Sep Purif Technol 2017; 188: 52-59.
  • [9] Halling-Sørensen B, Nielsen S.N, Lanzky P.F, Ingerslev F, Lützhøft H, Jørgensen S.E. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere 1998; 36: 357-393.
  • [10] Luo Y, Guo W, Ngo H.H, Nghiem L.D, Hai F.I, Zhang J, Liang S, Wang X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 2014; 473: 619-641.
  • [11] Brausch J.M, Rand G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011; 82: 1518-1532.
  • [12] Lapworth D.J, Baran N, Stuart M.E, Ward R.S. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 2012; 163: 287-303.
  • [13] Liu J.L, Wong M.H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 2013; 59: 208-224.
  • [14] Feng L, Van Hullebusch E.D, Rodrigo M.A, Esposito G, Oturan M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes, A review. Chem Eng J 2013; 228: 944-964.
  • [15] Evgenidou E.N, Konstantinou I.K, Lambropoulou D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ 2015; 505 905-926.
  • [16] Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. J Environ Manage 2011; 92: 2304-2347.
  • [17] Yang Y, Ok Y.S, Kim K.H, Kwon E.E, Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ 2017; 596: 303-320.
  • [18] Cizmas L, Sharma V.K, Gray C.M, McDonald T.J. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 2015; 13: 381-394.
  • [19] Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manage 2016; 182: 620-640.
  • [20] Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 2012; 429: 123-155.
  • [21] Ozaki, H. Rejection of micropollutants by membrane filtration. In Symp. Membrane Technology; April 2014, Johor Bharu.
  • [22] Urase T, Kikuta T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 2005; 39: 1289-1300.
  • [23] Vieno N, Tuhkanen T, Kronberg L. Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Technol 2006; 27: 183-192.
  • [24] Crane R.A, Scott T.B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 2012; 211: 112-125.
  • [25] Li X.Q, Elliott D.W, Zhang W.X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 2006; 31: 111-122.
  • [26] Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 2014; 187: 193-201.
  • [27] Michael I, Rizzo L, McArdell C.S, Manaia C.M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 2013; 47: 957-995.
  • [28] Sharma V.K, Anquandah G.A, Nesnas N. Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate (VI). Environ Chem Lett 2009; 7: 115-119.
  • [29] Taylor D, Senac T. Human pharmaceutical products in the environment–The “problem” in perspective. Chemosphere 2014; 115: 95-99.
  • [30] Campbell C.G, Borglin S.E, Green F.B, Grayson A, Wozei E, Stringfellow W.T. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 2006; 6: 1265–1280.
  • [31] Sayles G.D, You G, Wang M, Kupferle M.J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 1997; 31: 3448-3454.
  • [32] Nam S, Tratnyek P.G. Reduction of azo dyes with zero-valent iron. Water Res 2000; 34: 1837-1845.
  • [33] Sohn K, Kang S.W, Ahn S, Woo M, Yang S.K. Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 2006; 40: 5514-5519.
  • [34] Epolito W.J, Yang H, Bottomley L.A, Pavlostathis S.G. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. J. Hazard Mater 2008; 160: 594-600.
  • [35] Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 2016; 50: 7290-7304.
  • [36] Rivero-Huguet M, Marshall W.D. Reduction of hexavalent chromium mediated by micro-and nano-sized mixed metallic particles. J Hazard Mater 2009;169: 1081-1087.
  • [37] Elliott D.W, Zhang W.X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 2001; 35: 4922-4926.
  • [38] Lien H.L, Zhang W.X. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B 2007; 77: 110-116.
  • [39] Zhang W.X, Wang C.B, Lien H.L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 1998; 40: 387-395.
  • [40] Xu Y, Zhang W.X. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 2000; 39: 2238-2244.
  • [41] Tee Y.H, Bachas L, Bhattacharyya D. Degradation of trichloroethylene by iron-based bimetallic nanoparticles. J Phys Chem C 2009; 113: 9454-9464.
  • [42] Barnes R.J, Riba O, Gardner M.N, Singer A.C, Jackman S.A, Thompson I.P. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 2010; 80 554-562.
  • [43] Chang C, Lian F, Zhu L. Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 2011; 159: 2507-2514.
  • [44] Han Y, Li W, Zhang M, Tao K. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni (B)/Fe (B) bimetallic catalytic reductant. Chemosphere 2008; 72: 53-58.
  • [45] Schrick B, Blough J.L, Jones AD, Mallouk T.E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel− iron nanoparticles. Chem Mater 2002; 14: 5140-5147.
  • [46] Liu Y, Majetich S.A, Tilton R.D, Sholl D.S, Lowry G.V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Environ Sci Technol 2005; 39: 1338-1345.
  • [47] Wang F, Gao Y, Sun Q, Chen Z, Megharaj M, Naidu R. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction. Chem Eng J 2014; 255: 55-62.
  • [48] Liu T, Wang Z.L, Sun Y. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chem Eng J 2015; 263: 55-61.
  • [49] Jin X, Chen Z, Zhou R, Chen Z. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution. Mater Res Bull 2015; 61: 433-438.
  • [50] Fu F, Ma J, Xie L, Tang B, Han W, Lin S. Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manage 2013; 128: 822-827.
  • [51] Lu A.H, Li W.C, Matoussevitch N, Spliethoff B, Bönnemann H, Schüth F. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun 2005; 1: 98-100.
  • [52] Ahmed M.B, Zhou J.L, Ngo H.H, Guo W, Johir M.A.H, Sornalingam K, Belhaj D, Kallel M. Nano-Fe 0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chem Eng J 2017; 322: 571-581.
  • [53] Stefaniuk M, Oleszczuk P, Ok Y.S. Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 2016; 287: 618-632.
  • [54] Fang Z, Chen J, X. Oiu, X. Qiu, W. Cheng, L. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268 (2011) 60-67.
  • [55] Fu Y, Peng L, Zeng Q, Yang Y, Song H, Shao J, Liu S, Gu J. High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem Eng J 2015; 270: 631-640.
  • [56] Ghauch A, Tuqan A, Assi H.A. Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 2009; 157: 1626-1635.
  • [57] Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B. Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 2012; 181: 113-119.
  • [58] Xia S, Gu Z, Zhang Z, Zhang J, Hermanowicz S.W. Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem Eng J 2014; 257: 98-104.
  • [59] Liu X, Cao Z, Yuan Z, Zhang J, Guo X, Yang Y, He F, Zhao Y, Xu J. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem Eng J 2018; 334: 508-518.
  • [60] Guler U.A. Removal of tetracycline from aqueous solutions using nanoscale zero valent iron and functional pumice modified nanoscale zero valent iron. J Environ Eng Landsc 2017; 25: 223-233.
  • [61] Hanay Ö, Türk H. Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron. Desalin Water Treat 2015; 53: 1986-1994.
  • [62] Weng X, Chen Z, Chen Z, Megharaj M, Naidu R. Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics. Colloids Surf A Physico chem Eng Asp 2014a; 443: 404-409.
  • [63] Weng X, Cai W, Lin S, Chen S. Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 2017; 147: 137-142.
  • [64] Wang X, Du Y, Ma J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole. Appl Surf Sci 2016; 390: 50-59.
  • [65] Wang X, Liu P, Ma J, Liu H. Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized NZVI for reductive transformation of metronidazole. Appl Surf Sci2017; 396: 841-850.
  • [66] Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater2011; 192: 44-53.
  • [67] Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y, Gong B. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism. J Hazard Mater2017; 339: 22-32.
  • [68] Wu H, Feng Q, Yang H, Alam E, Gao B, Gu D. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms. Colloids Surf A Physico chem Eng Asp 2017; 517: 63-71.
  • [69] Yang J, Zhu M, Wang X, Alvarez P.J, Liu K. Poly (vinylidene fluoride) membrane supported nano zero-valent iron for metronidazole removal: Influences of calcium and bicarbonate ions. J Taiwan Inst Chem Eng 2015; 49: 113-118.
  • [70] Weng X, Sun Q, Lin S, Chen Z, Megharaj M, Naidu R. Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere 2014b; 103: 80-85.
  • [71] Weng X, Lin S, Zhong Y, Chen Z. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem Eng J 2013; 229: 27-34.
  • [72] Shirazi E, Torabian A, Nabi‐Bidhendi G. Carbamazepine Removal from Groundwater: Effectiveness of the TiO2/UV, Nanoparticulate Zero‐Valent Iron, and Fenton (NZVI/H2O2) Processes. CLEAN–Soil, Air, Water 2013; 41: 1062-1072.
  • [73] Dong H, Jiang Z, Zhang C, Deng J, Hou K, Cheng Y, Zhang L, Zeng G. Removal of Tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution. J Colloid Interface Sci 2018; 513: 117-125.
  • [74] Wu Y, Yue Q, Gao Y, Ren Z, Gao B. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline. J Env Sci 2017.
  • [75] Tabrizian P. Co-assembly of graphene oxide/magnetic bimetallic nanoparticles for high-efficiency removal of tetracycline. Doctoral dissertation, Concordia University, Montreal, Canada, 2017.
  • [76] Aslan S, Yalcin K, Hanay Ö, Yildiz B. Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle. Desalin Water Treat 2016; 57: 14762-14773.
  • [77] Singh K.P, Singh A.K, Gupta S, Rai P. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ Sci Pollut Res Int 2012; 19: 2063-2078.
  • [78] Aslan S,Türk H, Hanay Ö. Assessment of nanoscale Ni/Fe bimetallic particle for removal of tetracyclines. 6th International conference on studies in architecture, civil, construction and environmental engineering (SACCEE-17); 27-28 March2017; Ibis, Singapore.
  • [79] Raja1 G.G, Parthiban R, Pandian K. Effective removal of antibiotic metronidazole from water by using bimetallic nanoparticles. J Innov Res Sol 2014; 245-253.
  • [80] Liu W, Ma J, Shen C, Wen Y, Liu W. A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Res 2016; 90: 24-33.
  • [81] Ghauch A, Assi H.A, Bdeir S. Aqueous removal of diclofenac by plated elemental iron: bimetallic systems. J Hazard Mater 2010; 182: 64-74.
  • [82] Fang Z, Qiu X, Chen J, Qiu X. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Catal B-Environ 2010; 100: 221-228.
  • [83] Devi P, Saroha K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 2015; 271: 195-203.
  • [84] Wang CB, Zhang W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997; 31: 2154-2156.
  • [85] Machado S, Pacheco J.G, Nouws H.P.A, Albergaria J.T, Delerue-Matos C. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ SciTechnol 2017; 14: 1109-1118.
  • [86] Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 2016; 100: 245-266.
  • [87] Zhou Y, Tang L, Yang G, Zeng G, Deng Y, Huang B, Cai Y, Tang J, Wang J, Wu Y. Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2, 4-dichlorophenol. Catal Sci Technol 2016; 6: 1930-1939.
  • [88] Zhang W, Quan X, Wang J, Zhang Z, Chen Z. Rapid and complete dechlorination of PCP in aqueous solution using Ni–Fe nanoparticles under assistance of ultrasound. Chemosphere 2006; 65: 58-64.
  • [89] Jovanovic G.N, Žnidaršič Plazl P, Sakrittichai P, Al-Khaldi K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind Eng Chem Res 2005; 44: 5099-5106.
  • [90] Halling-Sørensen B, Sengeløv G,Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 2002; 42: 263-271.

AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION

Yıl 2019, , 222 - 239, 23.08.2019
https://doi.org/10.20290/estubtdb.609899

Öz

Kaynakça

  • [1] Mulder K, Hagens N, Fisher B. Burning water: a comparative analysis of the energy return on water invested. Ambio 2010; 391: 30-39.
  • [2] Falconer I.R, Humpage A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health 2005; 2: 43-50.
  • [3] Méndez E, González-Fuentes M.A, Rebollar-Perez G, Méndez-Albores A, Torres E. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. J Environ Sci Health, Part A 2017; 52: 235-253.
  • [4] Yahiat S, Fourcade F, Brosillon S, Amrane A. Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. Int Bio deterior Biodegradation 2011; 65: 997-1003.
  • [5] Miao XS, Koenig BG and Metcalfe CD. Analysis of AcidicDrugs in the Effluents of Sewage Treatment Plants Using Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. J Chromatogr A 2002; 952:139–147.
  • [6] Castiglioni S, Fanelli, R, Calamari D, Bagnati R and Zuccato E. Methodological Approaches for Studying Pharmaceuticals in the Environment by Comparing Predicted and Measured Concentrations in River Po, Italy. RegulToxicolPharmacol 2004; 39:25–32.
  • [7] Kolpin D.W, Furlong E.T, Meyer M.T, Thurman E.M, Zaugg S.D, Barber L.B and Buxton H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ Sci Technol 2002; 36:1202–1211.
  • [8] Ghasemian S, Nasuhoglu D, Omanovic S,Yargeau V. Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%-W20%-oxide electrodes. Sep Purif Technol 2017; 188: 52-59.
  • [9] Halling-Sørensen B, Nielsen S.N, Lanzky P.F, Ingerslev F, Lützhøft H, Jørgensen S.E. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere 1998; 36: 357-393.
  • [10] Luo Y, Guo W, Ngo H.H, Nghiem L.D, Hai F.I, Zhang J, Liang S, Wang X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 2014; 473: 619-641.
  • [11] Brausch J.M, Rand G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011; 82: 1518-1532.
  • [12] Lapworth D.J, Baran N, Stuart M.E, Ward R.S. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 2012; 163: 287-303.
  • [13] Liu J.L, Wong M.H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 2013; 59: 208-224.
  • [14] Feng L, Van Hullebusch E.D, Rodrigo M.A, Esposito G, Oturan M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes, A review. Chem Eng J 2013; 228: 944-964.
  • [15] Evgenidou E.N, Konstantinou I.K, Lambropoulou D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ 2015; 505 905-926.
  • [16] Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. J Environ Manage 2011; 92: 2304-2347.
  • [17] Yang Y, Ok Y.S, Kim K.H, Kwon E.E, Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ 2017; 596: 303-320.
  • [18] Cizmas L, Sharma V.K, Gray C.M, McDonald T.J. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 2015; 13: 381-394.
  • [19] Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manage 2016; 182: 620-640.
  • [20] Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 2012; 429: 123-155.
  • [21] Ozaki, H. Rejection of micropollutants by membrane filtration. In Symp. Membrane Technology; April 2014, Johor Bharu.
  • [22] Urase T, Kikuta T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 2005; 39: 1289-1300.
  • [23] Vieno N, Tuhkanen T, Kronberg L. Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Technol 2006; 27: 183-192.
  • [24] Crane R.A, Scott T.B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 2012; 211: 112-125.
  • [25] Li X.Q, Elliott D.W, Zhang W.X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 2006; 31: 111-122.
  • [26] Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 2014; 187: 193-201.
  • [27] Michael I, Rizzo L, McArdell C.S, Manaia C.M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 2013; 47: 957-995.
  • [28] Sharma V.K, Anquandah G.A, Nesnas N. Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate (VI). Environ Chem Lett 2009; 7: 115-119.
  • [29] Taylor D, Senac T. Human pharmaceutical products in the environment–The “problem” in perspective. Chemosphere 2014; 115: 95-99.
  • [30] Campbell C.G, Borglin S.E, Green F.B, Grayson A, Wozei E, Stringfellow W.T. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 2006; 6: 1265–1280.
  • [31] Sayles G.D, You G, Wang M, Kupferle M.J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 1997; 31: 3448-3454.
  • [32] Nam S, Tratnyek P.G. Reduction of azo dyes with zero-valent iron. Water Res 2000; 34: 1837-1845.
  • [33] Sohn K, Kang S.W, Ahn S, Woo M, Yang S.K. Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 2006; 40: 5514-5519.
  • [34] Epolito W.J, Yang H, Bottomley L.A, Pavlostathis S.G. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. J. Hazard Mater 2008; 160: 594-600.
  • [35] Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 2016; 50: 7290-7304.
  • [36] Rivero-Huguet M, Marshall W.D. Reduction of hexavalent chromium mediated by micro-and nano-sized mixed metallic particles. J Hazard Mater 2009;169: 1081-1087.
  • [37] Elliott D.W, Zhang W.X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 2001; 35: 4922-4926.
  • [38] Lien H.L, Zhang W.X. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B 2007; 77: 110-116.
  • [39] Zhang W.X, Wang C.B, Lien H.L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 1998; 40: 387-395.
  • [40] Xu Y, Zhang W.X. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 2000; 39: 2238-2244.
  • [41] Tee Y.H, Bachas L, Bhattacharyya D. Degradation of trichloroethylene by iron-based bimetallic nanoparticles. J Phys Chem C 2009; 113: 9454-9464.
  • [42] Barnes R.J, Riba O, Gardner M.N, Singer A.C, Jackman S.A, Thompson I.P. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 2010; 80 554-562.
  • [43] Chang C, Lian F, Zhu L. Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 2011; 159: 2507-2514.
  • [44] Han Y, Li W, Zhang M, Tao K. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni (B)/Fe (B) bimetallic catalytic reductant. Chemosphere 2008; 72: 53-58.
  • [45] Schrick B, Blough J.L, Jones AD, Mallouk T.E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel− iron nanoparticles. Chem Mater 2002; 14: 5140-5147.
  • [46] Liu Y, Majetich S.A, Tilton R.D, Sholl D.S, Lowry G.V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Environ Sci Technol 2005; 39: 1338-1345.
  • [47] Wang F, Gao Y, Sun Q, Chen Z, Megharaj M, Naidu R. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction. Chem Eng J 2014; 255: 55-62.
  • [48] Liu T, Wang Z.L, Sun Y. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chem Eng J 2015; 263: 55-61.
  • [49] Jin X, Chen Z, Zhou R, Chen Z. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution. Mater Res Bull 2015; 61: 433-438.
  • [50] Fu F, Ma J, Xie L, Tang B, Han W, Lin S. Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manage 2013; 128: 822-827.
  • [51] Lu A.H, Li W.C, Matoussevitch N, Spliethoff B, Bönnemann H, Schüth F. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun 2005; 1: 98-100.
  • [52] Ahmed M.B, Zhou J.L, Ngo H.H, Guo W, Johir M.A.H, Sornalingam K, Belhaj D, Kallel M. Nano-Fe 0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chem Eng J 2017; 322: 571-581.
  • [53] Stefaniuk M, Oleszczuk P, Ok Y.S. Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 2016; 287: 618-632.
  • [54] Fang Z, Chen J, X. Oiu, X. Qiu, W. Cheng, L. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268 (2011) 60-67.
  • [55] Fu Y, Peng L, Zeng Q, Yang Y, Song H, Shao J, Liu S, Gu J. High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem Eng J 2015; 270: 631-640.
  • [56] Ghauch A, Tuqan A, Assi H.A. Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 2009; 157: 1626-1635.
  • [57] Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B. Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 2012; 181: 113-119.
  • [58] Xia S, Gu Z, Zhang Z, Zhang J, Hermanowicz S.W. Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem Eng J 2014; 257: 98-104.
  • [59] Liu X, Cao Z, Yuan Z, Zhang J, Guo X, Yang Y, He F, Zhao Y, Xu J. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem Eng J 2018; 334: 508-518.
  • [60] Guler U.A. Removal of tetracycline from aqueous solutions using nanoscale zero valent iron and functional pumice modified nanoscale zero valent iron. J Environ Eng Landsc 2017; 25: 223-233.
  • [61] Hanay Ö, Türk H. Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron. Desalin Water Treat 2015; 53: 1986-1994.
  • [62] Weng X, Chen Z, Chen Z, Megharaj M, Naidu R. Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics. Colloids Surf A Physico chem Eng Asp 2014a; 443: 404-409.
  • [63] Weng X, Cai W, Lin S, Chen S. Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 2017; 147: 137-142.
  • [64] Wang X, Du Y, Ma J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole. Appl Surf Sci 2016; 390: 50-59.
  • [65] Wang X, Liu P, Ma J, Liu H. Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized NZVI for reductive transformation of metronidazole. Appl Surf Sci2017; 396: 841-850.
  • [66] Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater2011; 192: 44-53.
  • [67] Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y, Gong B. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism. J Hazard Mater2017; 339: 22-32.
  • [68] Wu H, Feng Q, Yang H, Alam E, Gao B, Gu D. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms. Colloids Surf A Physico chem Eng Asp 2017; 517: 63-71.
  • [69] Yang J, Zhu M, Wang X, Alvarez P.J, Liu K. Poly (vinylidene fluoride) membrane supported nano zero-valent iron for metronidazole removal: Influences of calcium and bicarbonate ions. J Taiwan Inst Chem Eng 2015; 49: 113-118.
  • [70] Weng X, Sun Q, Lin S, Chen Z, Megharaj M, Naidu R. Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere 2014b; 103: 80-85.
  • [71] Weng X, Lin S, Zhong Y, Chen Z. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem Eng J 2013; 229: 27-34.
  • [72] Shirazi E, Torabian A, Nabi‐Bidhendi G. Carbamazepine Removal from Groundwater: Effectiveness of the TiO2/UV, Nanoparticulate Zero‐Valent Iron, and Fenton (NZVI/H2O2) Processes. CLEAN–Soil, Air, Water 2013; 41: 1062-1072.
  • [73] Dong H, Jiang Z, Zhang C, Deng J, Hou K, Cheng Y, Zhang L, Zeng G. Removal of Tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution. J Colloid Interface Sci 2018; 513: 117-125.
  • [74] Wu Y, Yue Q, Gao Y, Ren Z, Gao B. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline. J Env Sci 2017.
  • [75] Tabrizian P. Co-assembly of graphene oxide/magnetic bimetallic nanoparticles for high-efficiency removal of tetracycline. Doctoral dissertation, Concordia University, Montreal, Canada, 2017.
  • [76] Aslan S, Yalcin K, Hanay Ö, Yildiz B. Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle. Desalin Water Treat 2016; 57: 14762-14773.
  • [77] Singh K.P, Singh A.K, Gupta S, Rai P. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ Sci Pollut Res Int 2012; 19: 2063-2078.
  • [78] Aslan S,Türk H, Hanay Ö. Assessment of nanoscale Ni/Fe bimetallic particle for removal of tetracyclines. 6th International conference on studies in architecture, civil, construction and environmental engineering (SACCEE-17); 27-28 March2017; Ibis, Singapore.
  • [79] Raja1 G.G, Parthiban R, Pandian K. Effective removal of antibiotic metronidazole from water by using bimetallic nanoparticles. J Innov Res Sol 2014; 245-253.
  • [80] Liu W, Ma J, Shen C, Wen Y, Liu W. A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Res 2016; 90: 24-33.
  • [81] Ghauch A, Assi H.A, Bdeir S. Aqueous removal of diclofenac by plated elemental iron: bimetallic systems. J Hazard Mater 2010; 182: 64-74.
  • [82] Fang Z, Qiu X, Chen J, Qiu X. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Catal B-Environ 2010; 100: 221-228.
  • [83] Devi P, Saroha K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 2015; 271: 195-203.
  • [84] Wang CB, Zhang W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997; 31: 2154-2156.
  • [85] Machado S, Pacheco J.G, Nouws H.P.A, Albergaria J.T, Delerue-Matos C. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ SciTechnol 2017; 14: 1109-1118.
  • [86] Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 2016; 100: 245-266.
  • [87] Zhou Y, Tang L, Yang G, Zeng G, Deng Y, Huang B, Cai Y, Tang J, Wang J, Wu Y. Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2, 4-dichlorophenol. Catal Sci Technol 2016; 6: 1930-1939.
  • [88] Zhang W, Quan X, Wang J, Zhang Z, Chen Z. Rapid and complete dechlorination of PCP in aqueous solution using Ni–Fe nanoparticles under assistance of ultrasound. Chemosphere 2006; 65: 58-64.
  • [89] Jovanovic G.N, Žnidaršič Plazl P, Sakrittichai P, Al-Khaldi K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind Eng Chem Res 2005; 44: 5099-5106.
  • [90] Halling-Sørensen B, Sengeløv G,Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 2002; 42: 263-271.
Toplam 90 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Özge Hanay Bu kişi benim 0000-0003-1202-3544

Hande Türk 0000-0001-6018-7450

Yayımlanma Tarihi 23 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Hanay, Ö., & Türk, H. (2019). AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 7(2), 222-239. https://doi.org/10.20290/estubtdb.609899
AMA Hanay Ö, Türk H. AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION. Estuscience - Theory. Ağustos 2019;7(2):222-239. doi:10.20290/estubtdb.609899
Chicago Hanay, Özge, ve Hande Türk. “AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 7, sy. 2 (Ağustos 2019): 222-39. https://doi.org/10.20290/estubtdb.609899.
EndNote Hanay Ö, Türk H (01 Ağustos 2019) AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7 2 222–239.
IEEE Ö. Hanay ve H. Türk, “AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION”, Estuscience - Theory, c. 7, sy. 2, ss. 222–239, 2019, doi: 10.20290/estubtdb.609899.
ISNAD Hanay, Özge - Türk, Hande. “AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7/2 (Ağustos 2019), 222-239. https://doi.org/10.20290/estubtdb.609899.
JAMA Hanay Ö, Türk H. AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION. Estuscience - Theory. 2019;7:222–239.
MLA Hanay, Özge ve Hande Türk. “AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 7, sy. 2, 2019, ss. 222-39, doi:10.20290/estubtdb.609899.
Vancouver Hanay Ö, Türk H. AN OVERVIEW ON USAGE OF NANOSCALE ZERO VALENT IRON FOR PHARMACEUTICALS ELIMINATION. Estuscience - Theory. 2019;7(2):222-39.