BibTex RIS Kaynak Göster

SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ

Yıl 2018, Cilt: 6 Sayı: 2, 164 - 176, 01.06.2018

Öz

Tekstil endüstrisi atıksuları arıtımı içermiş olduğu sentetik boyalar, karmaşık yapılı organik kirleticiler, yüzey aktif maddeler ve diğer toksik kimyasal maddeler nedeniyle geleneksel arıtım yöntemleriyle arıtılması oldukça zordur. Tekstil endüstrisi yüksek renk, kimyasal oksijen ihtiyacı (KOİ), pH, sıcaklık ve toksik kimyasallar nedeniyle çevre ve insan sağlığı üzerinde ciddi sorunlara sebep olduğundan ileri arıtım su ve atıksu arıtım yöntemleriyle arıtılması gerekmektedir. Bu çalışmada Basic Red 29 boyası kullanılarak hazırlanan model atıksu Ultrasound (US), Fenton (F) ve Sono-Fenton (US-F) yöntemleriyle arıtılmıştır. Ultrasonik arıtım çalışmaları 22 kHz ultrasonik frekansta 5 mL/dk debi işletilen sürekli reaktörde 135 W güç uygulanarak gerçekleştirilmiştir. Ultrasonik prosesin giderim verimini arttırmak yönünde bir etki gösterip göstermediğini belirlemek üzere sisteme dışarıdan hidrojen peroksit ilavesi yapılmıştır. Fenton (F) prosesi ile renk giderim etkinliğinin belirlenmesi amacıyla 1000 mg/L hidrojen peroksit derişimi sabit tutularak sisteme ilave edilen Fe+2 derişiminin giderim performansına olan etkisi belirlenmiştir. Hibrit Sono-Fenton (US-F) arıtım çalışmalarında ultrasound kullanımı ile sistemin giderim performansının %90’nın üzerine çıkartırken aynı giderim için tekil Fenton prosesinde kullanılması gereken Fe+2 derişiminin 1/5 oranında azaltılabileceği belirlenmiştir.

Kaynakça

  • [1] Eraslan, İ.H., İ. Bakan, and A.D. Helvacıoğlu Kuyucu, Türk Tekstil Ve Hazırgiyim Sektörünün Uluslararası Rekabetçilik Düzeyinin Analizi. 2008.
  • [2] Ulaş, Ç.K., Türkiyede ve dünya'da tekstil sanayinin durumu, yapısı, sorunları. 2015.
  • [3] O’Neill, C., et al., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 1999. 74(11): p. 1009-1018.
  • [4] Şayan, E., Ultrases Kullanarak Reaktif Tekstil Boyarmaddesinin Renk ve KO İ Gideriminin Modellenmesi ve Optimizasyonu, II. Mühendislik Bilimleri Genç Araştırmacılar Kongresi, İstanbul, 2005.
  • [5] Kang, S.-F., C.-H. Liao, and M.-C. Chen, Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 2002. 46(6): p. 923-928.
  • [6] Tigini, V., et al., Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicology and Environmental Safety, 2011. 74(4): p. 866-873.
  • [7] Abbasi, M. and N.R. Asl, Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of hazardous materials, 2008. 153(3): p. 942-947.
  • [8] Vandevivere, P.C., R. Bianchi, and W. Verstraete, Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. Journal of Chemical Technology and Biotechnology, 1998. 72(4): p. 289-302.
  • [9] Al-Kdasi, A., et al., Treatment of textile wastewater by advanced oxidation processes—a review. Global nest: the Int. J, 2004. 6(3): p. 222-230.
  • [10] Roosta, M., et al., Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 118: p. 55-65.
  • [11] Alinsafi, A., et al., Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 2005. 44(4): p. 461-470.
  • [12] Mason, T., et al., Potential uses of ultrasound in the biological decontamination of water. Ultrasonics sonochemistry, 2003. 10(6): p. 319-323.
  • [13] Joyce, E., et al., The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics sonochemistry, 2003. 10(6): p. 315-318.
  • [14] Suslick, K.S., Ultrasound: its chemical, physical, and biological effects. 1988: VCH Publishers.
  • [15] Suslick, K.S., Kirk-Othmer encyclopedia of chemical technology. Wiley & Sons, New York, 1998. 26: p. 517-541.
  • [16] Wu, J. and W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Advanced drug delivery reviews, 2008. 60(10): p. 1103-1116.
  • [17] Rae, J., et al., Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrasonics sonochemistry, 2005. 12(5): p. 325-329.
  • [18] Chun, H. and W. Yizhong, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere, 1999. 39(12): p. 2107-2115.
  • [19] Andreozzi, R., et al., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 1999. 53(1): p. 51-59.
  • [20] Correia, V.M., T. Stephenson, and S.J. Judd, Characterisation of textile wastewaters‐a review. Environmental technology, 1994. 15(10): p. 917-929.
  • [21] Parsons, S., Advanced oxidation processes for water and wastewater treatment. 2004: IWA publishing.
  • [22] Glaze, W.H., J.-W. Kang, and D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. 1987.
  • [23] Perez, M., et al., Fenton and photo-Fenton oxidation of textile effluents. Water research, 2002. 36(11): p. 2703-2710.
  • [24] Lin, S.H. and C.C. Lo, Fenton process for treatment of desizing wastewater. Water research, 1997. 31(8): p. 2050-2056.
  • [25] Bautista, P., et al., Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007. 143(1-2): p. 128-134.
  • [26] Liou, M.-J., M.-C. Lu, and J.-N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes. Water Research, 2003. 37(13): p. 3172-3179.
  • [27] Brillas, E., et al., Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 1998. 16(1): p. 31-42.
  • [28] Hermosilla, D., et al., Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 2012. 32(6): p. 1236-1243.
  • [29] Siddique, M., R. Farooq, and G.J. Price, Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrasonics sonochemistry, 2014. 21(3): p. 1206-1212.
  • [30] Yang, B., et al., Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode. Ultrasonics sonochemistry, 2014. 21(4): p. 1310-1317.
  • [31] Şahinkaya, S., COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 2013. 19(2): p. 601-605.

COLOR REMOVAL FROM WATER WITH ULTRASOUND, FENTON AND SONO-FENTON PROCESSES

Yıl 2018, Cilt: 6 Sayı: 2, 164 - 176, 01.06.2018

Öz

Treatment of textile industry wastewater is very difficult by conventional treatments methods because this industry wastewater contains synthetic dyes, complex organic pollutant, surfactants and other toxic substances. Textile industry wastewater needs to be treated by advanced water and wastewater treatment methods because it causes serious problems environment and human health due to high color, chemical oxygen demand (COD), pH, temperature and toxic chemicals. In this study, model wastewater prepared by using Basic Red 29 dye was treated by Ultrasound (US), Fenton (F) and Sono-Fenton (US-F) methods. Ultrasonic treatment studies were carried out with a power of 135 W in a continuous flow reactor operating at a flow rate of 5 mL / min and 22 kHz ultrasonic frequency. Hydrogen peroxide was added to the system to determine whether it had an effect to improve the removal efficiency on the ultrasonic process. In order to determine the color removal efficiency with the Fenton (F) process, 1000 mg / L hydrogen peroxide concentration was fixed and the effect of the added Fe + 2 concentration on the removal performance was determined. It has been determined that the use of ultrasound increases the removal performance of the system to over 90% in hybrid Sono-Fenton (US-F) treatment, when required Fe +2 concentration in a single Fenton process can be reduced by 1/5 for the same removal efficiency.

Kaynakça

  • [1] Eraslan, İ.H., İ. Bakan, and A.D. Helvacıoğlu Kuyucu, Türk Tekstil Ve Hazırgiyim Sektörünün Uluslararası Rekabetçilik Düzeyinin Analizi. 2008.
  • [2] Ulaş, Ç.K., Türkiyede ve dünya'da tekstil sanayinin durumu, yapısı, sorunları. 2015.
  • [3] O’Neill, C., et al., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 1999. 74(11): p. 1009-1018.
  • [4] Şayan, E., Ultrases Kullanarak Reaktif Tekstil Boyarmaddesinin Renk ve KO İ Gideriminin Modellenmesi ve Optimizasyonu, II. Mühendislik Bilimleri Genç Araştırmacılar Kongresi, İstanbul, 2005.
  • [5] Kang, S.-F., C.-H. Liao, and M.-C. Chen, Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 2002. 46(6): p. 923-928.
  • [6] Tigini, V., et al., Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicology and Environmental Safety, 2011. 74(4): p. 866-873.
  • [7] Abbasi, M. and N.R. Asl, Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of hazardous materials, 2008. 153(3): p. 942-947.
  • [8] Vandevivere, P.C., R. Bianchi, and W. Verstraete, Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. Journal of Chemical Technology and Biotechnology, 1998. 72(4): p. 289-302.
  • [9] Al-Kdasi, A., et al., Treatment of textile wastewater by advanced oxidation processes—a review. Global nest: the Int. J, 2004. 6(3): p. 222-230.
  • [10] Roosta, M., et al., Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 118: p. 55-65.
  • [11] Alinsafi, A., et al., Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 2005. 44(4): p. 461-470.
  • [12] Mason, T., et al., Potential uses of ultrasound in the biological decontamination of water. Ultrasonics sonochemistry, 2003. 10(6): p. 319-323.
  • [13] Joyce, E., et al., The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics sonochemistry, 2003. 10(6): p. 315-318.
  • [14] Suslick, K.S., Ultrasound: its chemical, physical, and biological effects. 1988: VCH Publishers.
  • [15] Suslick, K.S., Kirk-Othmer encyclopedia of chemical technology. Wiley & Sons, New York, 1998. 26: p. 517-541.
  • [16] Wu, J. and W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Advanced drug delivery reviews, 2008. 60(10): p. 1103-1116.
  • [17] Rae, J., et al., Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrasonics sonochemistry, 2005. 12(5): p. 325-329.
  • [18] Chun, H. and W. Yizhong, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere, 1999. 39(12): p. 2107-2115.
  • [19] Andreozzi, R., et al., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 1999. 53(1): p. 51-59.
  • [20] Correia, V.M., T. Stephenson, and S.J. Judd, Characterisation of textile wastewaters‐a review. Environmental technology, 1994. 15(10): p. 917-929.
  • [21] Parsons, S., Advanced oxidation processes for water and wastewater treatment. 2004: IWA publishing.
  • [22] Glaze, W.H., J.-W. Kang, and D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. 1987.
  • [23] Perez, M., et al., Fenton and photo-Fenton oxidation of textile effluents. Water research, 2002. 36(11): p. 2703-2710.
  • [24] Lin, S.H. and C.C. Lo, Fenton process for treatment of desizing wastewater. Water research, 1997. 31(8): p. 2050-2056.
  • [25] Bautista, P., et al., Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007. 143(1-2): p. 128-134.
  • [26] Liou, M.-J., M.-C. Lu, and J.-N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes. Water Research, 2003. 37(13): p. 3172-3179.
  • [27] Brillas, E., et al., Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 1998. 16(1): p. 31-42.
  • [28] Hermosilla, D., et al., Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 2012. 32(6): p. 1236-1243.
  • [29] Siddique, M., R. Farooq, and G.J. Price, Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrasonics sonochemistry, 2014. 21(3): p. 1206-1212.
  • [30] Yang, B., et al., Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode. Ultrasonics sonochemistry, 2014. 21(4): p. 1310-1317.
  • [31] Şahinkaya, S., COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 2013. 19(2): p. 601-605.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Ali Savaş Koparal Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Koparal, A. S. (2018). SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 6(2), 164-176.
AMA Koparal AS. SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ. Estuscience - Theory. Haziran 2018;6(2):164-176.
Chicago Koparal, Ali Savaş. “SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 6, sy. 2 (Haziran 2018): 164-76.
EndNote Koparal AS (01 Haziran 2018) SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6 2 164–176.
IEEE A. S. Koparal, “SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ”, Estuscience - Theory, c. 6, sy. 2, ss. 164–176, 2018.
ISNAD Koparal, Ali Savaş. “SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6/2 (Haziran 2018), 164-176.
JAMA Koparal AS. SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ. Estuscience - Theory. 2018;6:164–176.
MLA Koparal, Ali Savaş. “SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 6, sy. 2, 2018, ss. 164-76.
Vancouver Koparal AS. SULARDAN ULTRASOUND, FENTON VE SONO-FENTON PROSESLERİ İLE RENK GİDERİMİ. Estuscience - Theory. 2018;6(2):164-76.