BibTex RIS Kaynak Göster

Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi

Yıl 2018, Cilt: 6 Sayı: ozel, 152 - 162, 01.12.2018

Öz

Türkiye’de mevcut az veya orta katlı betonarme binaların birçoğu düşük performanslı beton kullanımı, yapım ve tasarım hataları nedeniyle deprem yükleri altında düşük yapısal performans göstermektedir. Betonarme binalarda donatı korozyonu taşıyıcı elemanları ve yapısal sistemin bütününü olumsuz etkiler. Bu çalışmada aderans kaybı, beton ve donatı özelliklerinde değişime neden olan donatı korozyonuna maruz bir binanın yapısal performans değişimi ele alınmaktadır. Bu amaçla zemin katında farklı korozyon senaryoları uygulanan 5 katlı tipik bir betonarme bina tasarlanmıştır. Binanın her bir korozyon senaryosu altında EC-8’e göre yapısal performansı değerlendirilmiştir. Statik itme analizinde Seismostruct 2016 yazılımı kullanılmıştır. Elde edilen sonuçlar, uzun süreli etkiyen ileri seviyede seyreden donatı korozyonunun yapısal performansı olumsuz etkilediğini göstermektedir. Binanın korozyonsuz durumuna kıyasla, performans seviyelerinde ve hedef deplasmanlarında kayda değer değişimler gözlenmiştir.

Kaynakça

  • Mangat P., Elgarf M. Flexural strength of concrete beams with corroding reinforcement, ACI Struct J.;1999; 97(1): 149–59.
  • Rodriguez J., Ortega LM., Casal J. Load carrying capacity of concrete structures with corroded reinforcement, Const. Build. Mater.; 1997; 11(4): 239–48.
  • Almusallam AA., Al-Gahtani AS., Aziz AR., Dakhil FH. and Rasheeduzzafar. Effect of reinforcement corrosion on flexural behaviour of concrete slabs, J Mater Civil Eng.;1996; 8: 123–7
  • Mohammed T.U, Hamada H., Yamaji T. Concrete after 30 years of exposure –Part II: Chloride ingress and corrosion of steel bars., ACI Mater J.; 2004; 101(1): 13–8.
  • Fallah MM., Shooshtari A., Ronagh HR. Investigating the effect of bond slip on the seismic response of RC structures, Structural Engineering and Mechanics; 2013; 46 (5): 695-711.
  • Otani S., Sozen M. Behavior of multistory reinforced concrete frames during earthquake, Structural Research; 1972; University of Illinois, Urbana, Illinois; 392.
  • Filippou FC., Popov EP., Bertero VV. Effect of bond deterioration on hysteretic behavior of reinforced concrete joints, Earthquake Engineering Research Center; 1983; University of California, Berkeley; Report No. EERC 83/19.
  • Morita S.,Kaku T. Slippage of reinforcement in beam-column joint of reinforced concrete frames, Proceeding of the 8th World Conference on Earthquake Engineering; 1984; San Francisco, 6: 477-484.
  • Alsiwat JM., Ozcebe G., Saatcioglu M. Hysteretic behavior of anchorage slip in R/C members, Journal of Structural Engineering, ASCE; 1992; 118(9): 2439-2458.
  • Limkatanyu S., Spacone E. Reinforced concrete frame element with bond interfaces; Part I:Displacement-based,force-based, and mixed formulations, Journal of Structural Engineering, ASCE; 2002; 128: 346-355.
  • Kwak HG., Kim JK. Implementation of bond-slip effect in analyses of RC frames undercyclic loads using layered section method, Journal of Engineering Structures;2006; 28: 1715-1727.
  • Oh BH., Kim SH. Realistic models for local bond stress-slip of reinforced concrete under repeated loading, J. Struct. Eng.; 2007; 133(2): 216-224.
  • Sezen H., Setzler EJ. Reinforcement slip in reinforced concrete columns, ACI Structural Journal; 2008; 105(3): 280-289.
  • Dominguez N., Fernandez MA., Ibrahimbegovic A. Enhanced solid element for modeling of reinforced concrete structures with bond-slip, Comput. Concrete; 2010; 7(4): 347-364.
  • Sezen H., Moehle JP. Seismic test of concrete columns with light transverse reinforcement, American Concrete Institute Structural Journal; 2006; 103 (6): 824-849.
  • Kivell A., Palermo A., Scott A. Effects of Bond Deterioration due to Corrosion in Reinforced Concrete, ingProccedings of the Ninth Pacific Conference on Earthquake Engineering Building an Eartquake-Resilient Society; Paper Number:81; 14-16 April 2011; Auckland, New Zealand.
  • T.C. Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi, Deprem bölgelerinde yapilacak binalar hakkinda yönetmelik, 2007.
  • Berto L., Seatta A., Simioni P., Vitaliani R. Nonlinear static analyses of RC frame structures: influence of corrosion on seismic response, Proceedings of the 8th. World Congress on Computational Mechanics (WCCM8) and 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008); June-July 2008;Venice, Italy.
  • Lee HS., Cho YS. Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion, International Journal of Fracture, ;2009;157(1–2): 81–88.
  • Ou YC., Fan HD., Dang N., Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack, Earthquake Engng Struct. Dyn., 2013.
  • Bhargava K., Ghosh A.K., Yasuhiro M., Ramanujam S. Suggested empirical model for corrosion-induced bond degradationin reinforced concrete, Journal of Structural Engineering; 2008; 134(2); 221–30.
  • Comite Euro-International du Beton-Federation International de la Precontrainte Design Code (CEB-FIP), Thomas Telford, London; 1990,pp. 82–87.
  • Hsu T.T.C. Unified Theory of Reinforced Concrete. CRC-Press Inc., Boca Raton, FL: 1993.
  • Mander JB., Priestley MJN., Park R., Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Division, ASCE; 1988, 114(8): 1804-26
  • Calabrese A., Almeida, JP., Pinho R., Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis, Journal of Earthquake Engineering; 2010, 14(sup1): 38–68.
  • EN 1998-3, Eurocode 8: Design of structures for earthquake resistance -Part 3: Assessment and retrofitting of buildings,2004.

Performance Evaluation of a Building Exposed to Corrosion from Ground Floor

Yıl 2018, Cilt: 6 Sayı: ozel, 152 - 162, 01.12.2018

Öz

Many of the low or medium-story reinforced concrete buildings existing in Turkey have poor structural performance under earthquake loads due to use of low performance concrete, design and construction errors. Rebar corrosion adversely affects structural performance of all structural members and the entire structural system in reinforced concrete buildings. This paper presents structural performance changes on a selected building affected rebar corrosion that cause important changes in concrete, reinforcement steel properties and bond loss. A typical five-story reinforced concrete building is designed to apply different rebar corrosion scenarios at ground floor. Structural performance evaluation of the building with different corrosion scenarios are performed according to EC-8. The software Seismostruct 2016 is used for pushover analysis. The results show that structural performance of the building is negatively affected from high level and long term rebar corrosion aspect. Significant changes in performance levels and in target displacements of the building are observed as compared with the results of the uncorroded state of the building.

Kaynakça

  • Mangat P., Elgarf M. Flexural strength of concrete beams with corroding reinforcement, ACI Struct J.;1999; 97(1): 149–59.
  • Rodriguez J., Ortega LM., Casal J. Load carrying capacity of concrete structures with corroded reinforcement, Const. Build. Mater.; 1997; 11(4): 239–48.
  • Almusallam AA., Al-Gahtani AS., Aziz AR., Dakhil FH. and Rasheeduzzafar. Effect of reinforcement corrosion on flexural behaviour of concrete slabs, J Mater Civil Eng.;1996; 8: 123–7
  • Mohammed T.U, Hamada H., Yamaji T. Concrete after 30 years of exposure –Part II: Chloride ingress and corrosion of steel bars., ACI Mater J.; 2004; 101(1): 13–8.
  • Fallah MM., Shooshtari A., Ronagh HR. Investigating the effect of bond slip on the seismic response of RC structures, Structural Engineering and Mechanics; 2013; 46 (5): 695-711.
  • Otani S., Sozen M. Behavior of multistory reinforced concrete frames during earthquake, Structural Research; 1972; University of Illinois, Urbana, Illinois; 392.
  • Filippou FC., Popov EP., Bertero VV. Effect of bond deterioration on hysteretic behavior of reinforced concrete joints, Earthquake Engineering Research Center; 1983; University of California, Berkeley; Report No. EERC 83/19.
  • Morita S.,Kaku T. Slippage of reinforcement in beam-column joint of reinforced concrete frames, Proceeding of the 8th World Conference on Earthquake Engineering; 1984; San Francisco, 6: 477-484.
  • Alsiwat JM., Ozcebe G., Saatcioglu M. Hysteretic behavior of anchorage slip in R/C members, Journal of Structural Engineering, ASCE; 1992; 118(9): 2439-2458.
  • Limkatanyu S., Spacone E. Reinforced concrete frame element with bond interfaces; Part I:Displacement-based,force-based, and mixed formulations, Journal of Structural Engineering, ASCE; 2002; 128: 346-355.
  • Kwak HG., Kim JK. Implementation of bond-slip effect in analyses of RC frames undercyclic loads using layered section method, Journal of Engineering Structures;2006; 28: 1715-1727.
  • Oh BH., Kim SH. Realistic models for local bond stress-slip of reinforced concrete under repeated loading, J. Struct. Eng.; 2007; 133(2): 216-224.
  • Sezen H., Setzler EJ. Reinforcement slip in reinforced concrete columns, ACI Structural Journal; 2008; 105(3): 280-289.
  • Dominguez N., Fernandez MA., Ibrahimbegovic A. Enhanced solid element for modeling of reinforced concrete structures with bond-slip, Comput. Concrete; 2010; 7(4): 347-364.
  • Sezen H., Moehle JP. Seismic test of concrete columns with light transverse reinforcement, American Concrete Institute Structural Journal; 2006; 103 (6): 824-849.
  • Kivell A., Palermo A., Scott A. Effects of Bond Deterioration due to Corrosion in Reinforced Concrete, ingProccedings of the Ninth Pacific Conference on Earthquake Engineering Building an Eartquake-Resilient Society; Paper Number:81; 14-16 April 2011; Auckland, New Zealand.
  • T.C. Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi, Deprem bölgelerinde yapilacak binalar hakkinda yönetmelik, 2007.
  • Berto L., Seatta A., Simioni P., Vitaliani R. Nonlinear static analyses of RC frame structures: influence of corrosion on seismic response, Proceedings of the 8th. World Congress on Computational Mechanics (WCCM8) and 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008); June-July 2008;Venice, Italy.
  • Lee HS., Cho YS. Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion, International Journal of Fracture, ;2009;157(1–2): 81–88.
  • Ou YC., Fan HD., Dang N., Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack, Earthquake Engng Struct. Dyn., 2013.
  • Bhargava K., Ghosh A.K., Yasuhiro M., Ramanujam S. Suggested empirical model for corrosion-induced bond degradationin reinforced concrete, Journal of Structural Engineering; 2008; 134(2); 221–30.
  • Comite Euro-International du Beton-Federation International de la Precontrainte Design Code (CEB-FIP), Thomas Telford, London; 1990,pp. 82–87.
  • Hsu T.T.C. Unified Theory of Reinforced Concrete. CRC-Press Inc., Boca Raton, FL: 1993.
  • Mander JB., Priestley MJN., Park R., Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Division, ASCE; 1988, 114(8): 1804-26
  • Calabrese A., Almeida, JP., Pinho R., Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis, Journal of Earthquake Engineering; 2010, 14(sup1): 38–68.
  • EN 1998-3, Eurocode 8: Design of structures for earthquake resistance -Part 3: Assessment and retrofitting of buildings,2004.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

İsa Yüksel Bu kişi benim

Gökhan Barış Sakcalı Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: ozel

Kaynak Göster

APA Yüksel, İ., & Sakcalı, G. B. (2018). Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 6(-), 152-162.
AMA Yüksel İ, Sakcalı GB. Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi. Estuscience - Theory. Aralık 2018;6(-):152-162.
Chicago Yüksel, İsa, ve Gökhan Barış Sakcalı. “Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 6, sy. - (Aralık 2018): 152-62.
EndNote Yüksel İ, Sakcalı GB (01 Aralık 2018) Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6 - 152–162.
IEEE İ. Yüksel ve G. B. Sakcalı, “Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi”, Estuscience - Theory, c. 6, sy. -, ss. 152–162, 2018.
ISNAD Yüksel, İsa - Sakcalı, Gökhan Barış. “Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6/- (Aralık 2018), 152-162.
JAMA Yüksel İ, Sakcalı GB. Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi. Estuscience - Theory. 2018;6:152–162.
MLA Yüksel, İsa ve Gökhan Barış Sakcalı. “Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 6, sy. -, 2018, ss. 152-6.
Vancouver Yüksel İ, Sakcalı GB. Zemin Katı Korozyona Maruz Kalmış Bir Binanın Performans Değerlendirmesi. Estuscience - Theory. 2018;6(-):152-6.