Research Article
BibTex RIS Cite

KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ

Year 2020, Volume: 8 Issue: 2, 303 - 315, 31.08.2020
https://doi.org/10.20290/estubtdb.659013

Abstract

Yapıların onarım ve güçlendirme işlerinde kimyasal ankrajlar yaygın olarak kullanılmaktadır. Hızlı ve kolay uygulanabilir olmaları nedeni ile tercih edilen kimyasal ankrajların dayanımlarına birçok parametre etki etmektedir. Bu çalışmada farklı kenar mesafesi ve derinliklerde ekilen kimyasal ankrajların çekme dayanımları incelenmiştir. 12 mm çapa sahip B420C sınıfındaki nervürlü çubuklar, 60, 100, 120, 150, 180 ve 240 mm derinliklere kenardan 60, 80, 100 ve 120 mm olacak şekilde iki bileşenli, kartuşlu yapıştırıcı ile ekilmişlerdir. Ekilen çubuklara eksenel çekme testi uygulanmış ve elde edilen yük-deplasman eğrilerinden başlangıç rijitliği, deplasman süneklik oranı ve enerji yutma kapasitesi değerleri hesaplanmıştır. ACI 318 Ek-D’nin göçme modlarına göre verdiği hesap yöntemleri dikkate alınarak tasarım dayanım değerleri belirlenmiş ve deney sonuçları ile karşılaştırılarak güvenlik katsayıları bulunmuştur.

References

  • [1] Cook RA. Behavior of chemically bonded anchors, ASCE Journal of Structural Engineering 1993; 119; 2744-2762.
  • [2] Özen M.A. Düşük ve normal dayanımlı betonlarda epoksi ankrajların çekme davranışı. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Türkiye, 2010. [3] Çalışkan Ö., 2010, Mevcut betonarme binaların dış perde duvar ile güçlendirilmesinde ankraj uygulamalarının deneysel olarak araştırılması. Doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, Türkiye, 2010. [4] ACI 349. Qualification of post-Installed mechanical anchors in concrete and commentary, American Concrete Insitute, Detroit, USA, 2007.
  • [5] PCI design handbook-precast and prestressed concrete, 5th ed. Chicago: Precast/Prestressed Concrete Institute; 1999.
  • [6] Darwin D, Zavaregh SS. Bond strength of grouted reinforcing bars. ACI Structural Journal 1996; 93: 486-495.
  • [7] McVay M, Cook, RA., Krishnamurthy K. Pull out simulation of post-installed chemically bonded anchors. Journal of Structural Engineering 1996; 122: 1016-1024.
  • [8] Obata M, Inoue M, Goto Y. The failure mechanism and the pull-out strength of a bond-type anchor near a free edge. Mechanics of Materials 1998; 28: 113-122.
  • [9] Lotze D, Klingner RE, Graves HL. Static behavior of anchors under combinations of tension and shear loading. ACI Structural Journal 2001; 98: 525-536.
  • [10] Zamora NA, Cook RA, Konz RC, Consolazio GR. Behavior and design of single, headed and unheaded, grouted anchors under tensile load. ACI Structural Journal 2003; 100: 222-230.
  • [11] Shirvani M, Klingner RE, Graves HL, Breakout capacity of anchors in concrete part 1: tension. ACI Structural Journal 2004; 101: 813-820.
  • [12] Strba M, Karmazinova M. Actual behavior and objective load-carrying capacity of tension steel expansion anchors to concrete. Steel Structures and Bridges 2012; 40: 440-444.
  • [13] Kim J, Jung W, Kwon M, Ju B. Performance evaluation of post-installed anchor for sign structure in South Korea. Construction and Building Materials 2013; 44: 496-506.
  • [14] Eligehausen R, Cook RA, Behavior and design adhesive bonded anchors. ACI Structural Journal 2006; 103: 822-831.
  • [15] Higgins CC, Klingner RE, Effects of environmental exposure on the performance of cast-in-place and retrofit anchors in concrete. ACI Structral Journal 1998; 95: 506-517.
  • [16] Gross JH, Klingner RE, Graves HL. Dynamic behavior of single and double near-edge anchors loaded in shear. ACI Structural Journal 2001; 98: 665-676.
  • [17] Cook RA, Konz RC. Factoring fluencing bond strength of adhesive anchors. ACI Structural Journal 2001; 98: 76-86.
  • [18] Özkul H, Mutlu M, Sağlam AR. Beton ankrajları. Sika Teknik Bülten 2001; 4.
  • [19] Bajer M, Barnat J. The glue-concrete interface of bonded anchors. Construction and Building Materials 2012; 34: 267-274.
  • [20] Epackachi S, Esmailli O, Mirghaderi SR, Behbahani AST. Behavior of adhesive bonded anchors under tension and shear loads. Journal of Constructional Steel Research 2015; 114: 269-280.
  • [21] Tondolo F. Bond behaviour with reinforcement corrosion. Construction and Building Materials 2015; 93: 926-932.
  • [22] Turker HT, Ozbay E, Balcıkanlı M. Pullout capacity development of cast in place anchors with embedded studs. Construction and Building Materials 2016; 102: 39-43.
  • [23] Richardson AE, Dawson S, Campbell L, Moore G, Mc Kenzie C. Temperature related pull-out performance of chemical anchor bolts in fibre concrete. Concrete and Building Materials 2019; 196: 478-484.
  • [24] Hlavicka V, Lubloy E. Concrete cone failure of bonded anchors in thermally damaged concrete. Construction and Building Materials 2018; 171: 588-597.
  • [25] ACI 318. Building code requirements for reinforced concrete. American Concrete Institute. Detroit, USA, 2008.
  • [26] ASTM E 488. Standard test methods for strength of anchors in concrete and masonry elements. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia 1984.
Year 2020, Volume: 8 Issue: 2, 303 - 315, 31.08.2020
https://doi.org/10.20290/estubtdb.659013

Abstract

References

  • [1] Cook RA. Behavior of chemically bonded anchors, ASCE Journal of Structural Engineering 1993; 119; 2744-2762.
  • [2] Özen M.A. Düşük ve normal dayanımlı betonlarda epoksi ankrajların çekme davranışı. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Türkiye, 2010. [3] Çalışkan Ö., 2010, Mevcut betonarme binaların dış perde duvar ile güçlendirilmesinde ankraj uygulamalarının deneysel olarak araştırılması. Doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, Türkiye, 2010. [4] ACI 349. Qualification of post-Installed mechanical anchors in concrete and commentary, American Concrete Insitute, Detroit, USA, 2007.
  • [5] PCI design handbook-precast and prestressed concrete, 5th ed. Chicago: Precast/Prestressed Concrete Institute; 1999.
  • [6] Darwin D, Zavaregh SS. Bond strength of grouted reinforcing bars. ACI Structural Journal 1996; 93: 486-495.
  • [7] McVay M, Cook, RA., Krishnamurthy K. Pull out simulation of post-installed chemically bonded anchors. Journal of Structural Engineering 1996; 122: 1016-1024.
  • [8] Obata M, Inoue M, Goto Y. The failure mechanism and the pull-out strength of a bond-type anchor near a free edge. Mechanics of Materials 1998; 28: 113-122.
  • [9] Lotze D, Klingner RE, Graves HL. Static behavior of anchors under combinations of tension and shear loading. ACI Structural Journal 2001; 98: 525-536.
  • [10] Zamora NA, Cook RA, Konz RC, Consolazio GR. Behavior and design of single, headed and unheaded, grouted anchors under tensile load. ACI Structural Journal 2003; 100: 222-230.
  • [11] Shirvani M, Klingner RE, Graves HL, Breakout capacity of anchors in concrete part 1: tension. ACI Structural Journal 2004; 101: 813-820.
  • [12] Strba M, Karmazinova M. Actual behavior and objective load-carrying capacity of tension steel expansion anchors to concrete. Steel Structures and Bridges 2012; 40: 440-444.
  • [13] Kim J, Jung W, Kwon M, Ju B. Performance evaluation of post-installed anchor for sign structure in South Korea. Construction and Building Materials 2013; 44: 496-506.
  • [14] Eligehausen R, Cook RA, Behavior and design adhesive bonded anchors. ACI Structural Journal 2006; 103: 822-831.
  • [15] Higgins CC, Klingner RE, Effects of environmental exposure on the performance of cast-in-place and retrofit anchors in concrete. ACI Structral Journal 1998; 95: 506-517.
  • [16] Gross JH, Klingner RE, Graves HL. Dynamic behavior of single and double near-edge anchors loaded in shear. ACI Structural Journal 2001; 98: 665-676.
  • [17] Cook RA, Konz RC. Factoring fluencing bond strength of adhesive anchors. ACI Structural Journal 2001; 98: 76-86.
  • [18] Özkul H, Mutlu M, Sağlam AR. Beton ankrajları. Sika Teknik Bülten 2001; 4.
  • [19] Bajer M, Barnat J. The glue-concrete interface of bonded anchors. Construction and Building Materials 2012; 34: 267-274.
  • [20] Epackachi S, Esmailli O, Mirghaderi SR, Behbahani AST. Behavior of adhesive bonded anchors under tension and shear loads. Journal of Constructional Steel Research 2015; 114: 269-280.
  • [21] Tondolo F. Bond behaviour with reinforcement corrosion. Construction and Building Materials 2015; 93: 926-932.
  • [22] Turker HT, Ozbay E, Balcıkanlı M. Pullout capacity development of cast in place anchors with embedded studs. Construction and Building Materials 2016; 102: 39-43.
  • [23] Richardson AE, Dawson S, Campbell L, Moore G, Mc Kenzie C. Temperature related pull-out performance of chemical anchor bolts in fibre concrete. Concrete and Building Materials 2019; 196: 478-484.
  • [24] Hlavicka V, Lubloy E. Concrete cone failure of bonded anchors in thermally damaged concrete. Construction and Building Materials 2018; 171: 588-597.
  • [25] ACI 318. Building code requirements for reinforced concrete. American Concrete Institute. Detroit, USA, 2008.
  • [26] ASTM E 488. Standard test methods for strength of anchors in concrete and masonry elements. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia 1984.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özlem Çalışkan 0000-0002-5272-9552

Publication Date August 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Çalışkan, Ö. (2020). KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(2), 303-315. https://doi.org/10.20290/estubtdb.659013
AMA Çalışkan Ö. KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. August 2020;8(2):303-315. doi:10.20290/estubtdb.659013
Chicago Çalışkan, Özlem. “KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, no. 2 (August 2020): 303-15. https://doi.org/10.20290/estubtdb.659013.
EndNote Çalışkan Ö (August 1, 2020) KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 2 303–315.
IEEE Ö. Çalışkan, “KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, pp. 303–315, 2020, doi: 10.20290/estubtdb.659013.
ISNAD Çalışkan, Özlem. “KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/2 (August 2020), 303-315. https://doi.org/10.20290/estubtdb.659013.
JAMA Çalışkan Ö. KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8:303–315.
MLA Çalışkan, Özlem. “KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, 2020, pp. 303-15, doi:10.20290/estubtdb.659013.
Vancouver Çalışkan Ö. KİMYASAL ANKRAJLARDA KENAR MESAFESİ VE GÖMME DERİNLİĞİNİN ETKİSİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8(2):303-15.