Araştırma Makalesi
BibTex RIS Kaynak Göster

CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT

Yıl 2025, Cilt: 13 Sayı: 2, 104 - 108, 25.08.2025
https://doi.org/10.20290/estubtdb.1660438

Öz

It is known that a chaotic function in the Devaney sense has three main properties: namely, topological transitivity, density of periodic points, and sensitive dependence on initial conditions. The product method is a main tool for constructing new discrete dynamical systems as well as topological space. In the theory of discrete dynamical systems, it has been investigated whether the properties of two chaotic functions carry over to their product function, and it has been shown that product of two Devaney chaotic functions may not always be chaotic in the Devaney sense. In this work, we consider the reverse problem: if the product system is chaotic, what can be said about the chaotic behavior of its components? So, we construct chaotic functions in the product form φ×γ, where the second component is chaotic while first is not. Additionally, we show that φ×γ is chaotic in the Li-Yorke sense if γ is Li-Yorke chaotic, even though φ is not.

Kaynakça

  • [1] Değirmenci N, Koçak Ş. Chaos in product maps. Turk J Math 2010; 34 (4): 593-600.
  • [2] Kwietniak D, Misiurewicz M. Exact Devaney chaos and entropy. Qual Theor Dyn Syst 2005; 6: 169-179.
  • [3] Devaney RL. An introduction to chaotic dynamical systems. New York, NY, USA: Addison Wesley, 1989.
  • [4] Armstrong MA. Basic Topology. Springer-Verlag, New York, 1983.
  • [5] Mangang KB. Li-Yorke chaos in product dynamical systems. Adv Dyn Syst Appl 2017; 12 (1): 81-88.
  • [6] Banks J, Brooks J, Cairns G, Davis G, Stacey P. On Devaney's definition of chaos. Am Math Mon 1992; 99 (4): 332-334.

CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT

Yıl 2025, Cilt: 13 Sayı: 2, 104 - 108, 25.08.2025
https://doi.org/10.20290/estubtdb.1660438

Öz

It is known that a chaotic function in the Devaney sense has three main properties: namely, topological transitivity, density of periodic points, and sensitive dependence on initial conditions. The product method is a main tool for constructing new discrete dynamical systems as well as topological space. In the theory of discrete dynamical systems, it has been investigated whether the properties of two chaotic functions carry over to their product function, and it has been shown that product of two Devaney chaotic functions may not always be chaotic in the Devaney sense. In this work, we consider the reverse problem: if the product system is chaotic, what can be said about the chaotic behavior of its components? So, we construct chaotic functions in the product form φ×γ, where the second component is chaotic while first is not. Additionally, we show that φ×γ is chaotic in the Li-Yorke sense if γ is Li-Yorke chaotic, even though φ is not.

Kaynakça

  • [1] Değirmenci N, Koçak Ş. Chaos in product maps. Turk J Math 2010; 34 (4): 593-600.
  • [2] Kwietniak D, Misiurewicz M. Exact Devaney chaos and entropy. Qual Theor Dyn Syst 2005; 6: 169-179.
  • [3] Devaney RL. An introduction to chaotic dynamical systems. New York, NY, USA: Addison Wesley, 1989.
  • [4] Armstrong MA. Basic Topology. Springer-Verlag, New York, 1983.
  • [5] Mangang KB. Li-Yorke chaos in product dynamical systems. Adv Dyn Syst Appl 2017; 12 (1): 81-88.
  • [6] Banks J, Brooks J, Cairns G, Davis G, Stacey P. On Devaney's definition of chaos. Am Math Mon 1992; 99 (4): 332-334.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler, Topoloji
Bölüm Makaleler
Yazarlar

Ebru Usluca 0000-0003-3263-131X

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 31 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Usluca, E. (2025). CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 13(2), 104-108. https://doi.org/10.20290/estubtdb.1660438
AMA Usluca E. CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT. Estuscience - Theory. Ağustos 2025;13(2):104-108. doi:10.20290/estubtdb.1660438
Chicago Usluca, Ebru. “CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13, sy. 2 (Ağustos 2025): 104-8. https://doi.org/10.20290/estubtdb.1660438.
EndNote Usluca E (01 Ağustos 2025) CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13 2 104–108.
IEEE E. Usluca, “CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT”, Estuscience - Theory, c. 13, sy. 2, ss. 104–108, 2025, doi: 10.20290/estubtdb.1660438.
ISNAD Usluca, Ebru. “CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13/2 (Ağustos2025), 104-108. https://doi.org/10.20290/estubtdb.1660438.
JAMA Usluca E. CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT. Estuscience - Theory. 2025;13:104–108.
MLA Usluca, Ebru. “CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 13, sy. 2, 2025, ss. 104-8, doi:10.20290/estubtdb.1660438.
Vancouver Usluca E. CHAOTIC PRODUCT FUNCTIONS WITH A NON-CHAOTIC COMPONENT. Estuscience - Theory. 2025;13(2):104-8.