Review
BibTex RIS Cite

PLANT IMMUNE RECEPTORS

Year 2020, , 125 - 145, 31.01.2020
https://doi.org/10.18036/estubtdc.524185

Abstract

References

  • [1] Macho AP, Zipfel C. Plant PRRs and the Activation of Innate Immune Signaling. Mol Cell 2014; 54(2): 263-72. doi: 10.1016/j.molcel.2014.03.028.
  • [2] Jones JD, Dangl JL. The plant immune system. Nature 2006; 444 (7117): 323–329.
  • [3] Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 2010; 11 (8): 539–548.
  • [4] Mackey D, McFall J. MAMPs and MIMIPs; Proposed Classification for Inducers of Innate Immunity. 2006; Mol Microbiol 61(6):1365–1371. doi:10.1111/j.1365-2958.2006.05311.x.
  • [5] Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 2008; 20: 10–16. DOI: 10.1016/j.coi.2007.11.003
  • [6] Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the Plant Immune System from Dissection to Deployment. Science (New York, NY). 2013; 341(6147): 746-751. doi:10.1126/science.1236011.
  • [7] Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 2012; 15: 349–357.
  • [8] Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003; 15: 809–834.
  • [9] Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124: 803–814.
  • [10] Tör M, Michael T. Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 2009; 60(13): 3645–3654. doi:10.1093/jxb/erp233.
  • [11] Ingle RA, Carstens M, Denby KJ. PAMP recognition and the plant–pathogen arms race. Bioessays 2006; 28: 880–889.
  • [12] Tör M. Tapping into molecular conversation between oomycete pathogens and their host plants. Eur J Plant Pathol 2008; 122: 57–69.
  • [13] Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 2004; 428: 764–767.
  • [14] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006; 125: 749–760.
  • [15] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60: 379-406.
  • [16] Takken FL, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 2012; 15: 375–384.
  • [17] Cui H, Tsuda K, Parker JE. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol 2015; 66: 487–511.
  • [18] Li X, Kapos P, Zhang Y. NLRs in plants. Curr Opin Immunol 2015; 32: 114-121.
  • [19] Jones JDG, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science 2016; 354: aaf6395.
  • [20] Li H, Zhang Z. Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks. Front Agr Sci Eng 2016; 3(2): 102–112. DOI : 10.15302/J-FASE-2016100.
  • [21] Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 2014; 20 :47–54. http://dx.doi.org/10.1016/j.pbi.2014.04.007.
  • [22] Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 2008; 319: 294.
  • [23] Bleecker AB, Kende H. Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 2000; 16: 1-18.
  • [24] Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001; 409: 1060-1063.
  • [25] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408: 796-815.
  • [26] Shiu SH, Bleecker AB. Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling. Sci STKE, 2001; (113) re22. DOI: 10.1126/stke.2001.113.re22.
  • [27] Zipfel C. Plant pattern-recognition receptors. Trends Immunol 2014; 35: 345–351.
  • [28] Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69: 373-398.
  • [29] Couto DE, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 2016; 16: 537-552.
  • [30] Kirkbride KC, Ray BN, Blobe GC. Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem Sci 2005; 30/11: 611-621.
  • [31] Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017; 6: e25114. doi:10.7554/eLife.25114.
  • [32] Chandra A. The Role of ErbB3 Inhibitors as Cancer Therapeutics. Boston University, Massachusetts, USA, MSc, 2015. DOI:10.13140/RG.2.2.13547.34081.
  • [33] Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005; 139: 1107–1124.
  • [34] Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 2001; 98(19): 10763–10768.
  • [35] Shiu SH, Bleecker AB, 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132, 530–543.
  • [36] Shiu SH, Karlowski WM, Pan R. Tzeng YH, Mayer KF, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004; 16: 1220-1234.
  • [37] Haffani YZ, Silva NF, Goring DR. Receptor kinase signalling in plants. Can J Bot 2004; 82: 1-15.
  • [38] Herve C, Serres J, Dabos P, Canut H, Barre A, Rouge P, Lescure B. Characterization of the Arabidopsis lecRK-a genes: Members of a super-family encoding putative receptors with an extra-cellular domain homologous to legume lectins. Plant Mol Biol 1999; 4: 671-682.
  • [39] Chinchilla, D, Bauer Z, Regenass M, Boller T, Felix G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 2006; 18: 465–476.
  • [40] Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 2013; 342: 624–628.
  • [41] Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 2006; 103: 10104–10109.
  • [42] Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 2010; 107: 9452–9457.
  • [43] Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY. Stacey, G. Identification of a plant receptor for extracellular ATP. Science 2014; 343: 290–294.
  • [44] Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K., Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 2006; 103: 11086–11091.
  • [45] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 2007; 104: 19613–19618.
  • [46] Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono J-J, Cullimore JV, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA, 2011; 108: 19824–19829.
  • [47] Liu P, Du L, Huang YY, Gao S, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 2017; 17 :47. DOI 10.1186/s12862-017-0891-5.
  • [48] Dievart A, Clark SE. LRR-containing receptors regulating plant development and defense. Development 2004; 131: 251-261.
  • [49] Zhang XS, Choi JH, Heinz J, Chetty CS. Domain-specific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase LRR RLK. genes. J Mol Evol 2006; 63: 612-621.
  • [50] Krupa A, Preethi G, Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: Distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol 2004; 339: 1025-1039.
  • [51] Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2006; 2: 1-15.
  • [52] Adams JA. Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the auto inhibitor model? Biochemistry 2003; 42: 601-607.
  • [53] Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 2010; 285: 10454-10463.
  • [54] Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci USA 2010; 107: 8029-8034.
  • [55] Dardick C, Schwessinger B, Ronald P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 2012; 15: 358–366.
  • [56] He K, et al. BAK1 and BKK1 regulate brassinosteroid dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 2007; 17: 1109–1115.
  • [57] Kemmerling B, et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 2007; 17: 1116–1122.
  • [58] Chinchilla D, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 2007; 448: 497–500.
  • [59] Heese A, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 2007; 104: 12217–12222.
  • [60] Ingram GC. Cell signalling: the merry lives of BAK1. Curr Biol 2007; 17: 603–605.
  • [61] Kemmerling B, Nürnberger T. Brassinosteroid independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Signal Behav 2008; 3: 116–118.
  • [62] Vert G. Plant signaling: brassinosteroids, immunity and effectors are BAK! Curr Biol 2008; 18: 963–965.
  • [63] Chinchilla D, Shan L, He P, Vries S, Kemmerling B. One for all: the receptor-associated kinase BAK1. Trends Plant Sci 2009; 14(10): 535-541.
  • [64] Yang D-H, Hettenhausen C, Baldwin IT, Wu J. The multifaceted function of BAK1/SERK3: Plant immunity to pathogens and responses to insect herbivores. Plant Signal Behav 2011; 6(9): 1322-1324. doi:10.4161/psb.6.9.16438.
  • [65] Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 2002; 110: 213-222.
  • [66] Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 2002; 110(2): 203-212.
  • [67] Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 2001; 127(3): 803-16.
  • [68] Loris R. Principles of structures of animal and plant lectins. Biochim Biophys Acta 2002; 1572: 198–208.
  • [69] Buist G, Steen A, Kok J, Kuipers OP. LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 2008; 68: 838–847.doi: 10.1111/j.1365-2958.2008.06211.x.
  • [70] Peumans WJ, Van Damme EJM. Lectins as Plant Defense Proteins. Plant Physiol 1995; 109: 347-352.
  • [71] Van Damme EJ, Barre A, Rougé P, Peumans WJ. Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 2004; 9: 484-489. doi: 10.1016/j.tplants.2004.08.003.
  • [72] Liu Y, Li J. An in vivo invesgation of amino acid residues critical for the lectin function of arabidopsis calreticulin 3. Mol Plant 2013; 6: 985-987. doi:10.1093/mp/sss163.
  • [73] Goldstein IJ, Hayes CE. The lectins: Carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 1978; 35: 127-340.
  • [74] Chrispeels MJ, Raikhel NV. Lectins, Lectin Genes and Their Roles in Plant Defense. Plant Cell 1991; 3: 1-9.
  • [75] Van Damme EJM, Lannoo N, Peumans W. Plant lectins. Adv Bot Res 2008; 48: 107-209. Doi:10.1016/S0065-2296(08) 00403-5.
  • [76] Singh P, Zimmerli L. Lectin Receptor Kinases in Plant Innate Immunity. Front Plant Sci 2013; 4: 124. Doi: 10.3389/fpls.2013.00124.
  • [77] Vaid N, Macovei A, Tuteja N. Knights in activation: lectin receptor-like kinases in plant development and stress responses. Mol Plant 2013; 6: 1405-1418. Doi: 10.1093/mp/sst033.
  • [78] Bellande K, Bono JJ, Savelli B, Jamet E, Canut H. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18: 1164; doi:10.3390/ijms18061164.
  • [79] Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell Microbiol 2005; 7: 481-488. Doi: 10.1111/j.1462-5822.2005.00506.x.
  • [80] Bouwmeester K, Govers F. Arabidopsis L-type lectin receptor kinases: phylogeny classification and expression profiles. J Exp Bot 2009; 60: 4383-4396. Doi: 10.1093/jxb/erp277.
  • [81] Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, et al. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 2011; 7: e1001327. doi:10.1371/journal.ppat.1001327.
  • [82] Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, et al. The lectin-receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 2012; 24: 1256–1270. Doi: 10.1105/tpc.112.095778.
  • [83] Huang P, Ju H-W, Min J-H, Zhang X, Kim S-H, Yang K-Y, et al. Over expression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 2013; 203–204: 98–106. doi: 10.1016/j.plantsci.2012.12.019.
  • [84] Huang P-Y, Yeh Y-H, Liu A-C, Cheng C-P, Zimmerli L. The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 2014; 79: 243– 255. doi:10.1111/tpj.12557.
  • [85] Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herye C, Boutet E, et al. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 2003; 133: 1893–1910. doi:10.1104/pp.103.027680.
  • [86] Trontin C, Kiani S, Corwin J, Hematy K, Yansouni J, Kliebenstein D, Loudet O. A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana. Plant J 2014; 78: 121–133.
  • [87] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 2006; 46: 794–804.
  • [88] Kim H, Jung M, Lee S, Kim K, Byun H, Choi M, Park H, Cho M, Chung W. An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem. Biophys Res Commun 2009; 381: 424–428.
  • [89] Kim YT, Oh J, Kim KH, Uhm JY, Lee BM. Isolation and characterization of NgRLK1, a receptor-like kinase of Nicotiana glutinosa that interacts with the elicitin of Phytophthora capsici. Mol Biol Rep 2009; 37: 717–727. doi: 10.1007/s11033-009-9570-y.
  • [90] Gilardoni P, Hettenhausen C, Baldwin I, Bonaventure G. Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell Environ 2011; 23: 3512–3532.
  • [91] Cheng X, Wu Y, Guo J, Du B, Chen R, Zhu L, He G. A rice lectin receptor-like kinase is involved in innate immune responses also contributes to seed germination. Plant J 2013; 76: 687–698.
  • [92] Cole S, Diener A. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 2013; 200: 172–184.
  • [93] Guidarelli M, Zoli L, Orlandini A, Bertolini P, Baraldi E. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Mol Plant Pathol 2014; 15: 832–840.
  • [94] Hwang I, Hwang B. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol2014; 155: 447–463.
  • [95] Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel Y, Sanchez-Carballo P, Zahringer U, Huckelhoven R, Lee J, et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 2015; 16: 426–433.
  • [96] Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, et al. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 2007; 19: 94–106. doi:10.1105/tpc.106.048199.
  • [97] Ivanov R, Fobis-Loisy I, Gaude T. When no means no: Guide to Brassicaceae self-incompatibility. Trends Plant Sci 2010; 15: 387–394.
  • [98] Nasrallah JB, Nasrallah M. S-locus receptor kinase signalling. Biochem Soc Trans 2014; 42: 313–319.
  • [99] Deb S, Sankaranarayanan S, Wewala G, Widdup E, Samuel M. The S-domain receptor kinase Arabidopsis receptor kinase2 and the U box/armadillo repeat-containing E3 ubiquitin ligase9 module mediates lateral root development under phosphate starvation in Arabidopsis. Plant Physiol 2014; 165: 1647–1656.
  • [100] Ringli C. Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol 2010; 153: 1445–52.
  • [101] Seifert GJ, Blaukopf C. Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 2010; 153: 467–78.
  • [102] Steinwand BJ, Kieber JJ. The role of receptor-like kinases in regulating cell wall function. Plant Physiol 2010; 153: 479–84.
  • [103] Wolf S, Mravec J, Greiner S, Mouille G, Hofte H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 2012; 22: 1732–1737.
  • [104] Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 2012; 17: 495–502.doi:10.1016/j.tplants.2012.04.003.
  • [105] Lannoo N, Van Damme EJ. Lectin domains at the frontiers of plant defense. Front Plant Sci 2014; 5: 397.
  • [106] Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 2010; 285: 28902–28911.doi:10.1074/jbc.M110.116657.
  • [107] Tanaka K, Nguyen CT, Liang Y, Cao Y, Stacey G. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal Behav 2013; 8: e22598. doi:10.4161/psb.22598.
  • [108] Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-induced dimerization activates a plant immune receptor. Science 2012; 336: 1160–1164. doi: 10.1126/science.1218867.
  • [109] Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al. Two LysM recepto rmolecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 2010; 64: 204–214.doi:10.1111/j.1365- 313X.2010.04324.x.
  • [110] Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, et al. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 2012; 53: 1696–1706.doi:10.1093/pcp/pcs113.
  • [111] Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA 2014; 111: E404–E413. doi:10.1073/pnas.1312099111.
  • [112] Kouzai Y, Nakajima K, Hayafune M, Ozawa K, Kaku H, Shibuya N, et al. CEBiP is the majör chitin oligomers-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol 2014; 84: 519–528.doi: 10.1007/s11103-013-0149-6.
  • [113] de Jonge R, van Esse HP, Kombrink A, Shinya, T, Desaki, Y, Bours, R, van der Krol S, Shibuya, N, Joosten MH, Thomma BP. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010; 329: 953–955.
  • [114] Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 2004; 16: 1604–1615.
  • [115] Fliegmann J, Mithöfer A, Wanner G, Ebel J. An ancient enzyme domain hidden in the putative _-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 2004; 279: 1132–1140.
  • [116] Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch, G, Keizer, LP, Zhou J, Liebrand TW, Xie C, Govers F, Robatzek S,. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 2015; 1: 15034.
  • [117] Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor tu elicits innate immunity in Arabidopsis plants. Plant Cell 2004; 16: 3496–3507.
  • [118] Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282: 32338–32348.
  • [119] Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 2016; 211: 1008–1019.
  • [120] Prince DC, Drurey C, Zipfel C, Hogenhout SA. The leucine-rich repeat receptor-like kinase brassinosteroid insensitive1-associated kinase1 and the cytochrome p450 phytoalexin deficient 3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol 2014; 164: 2207–2219.
  • [121] Kohorn BD, Lane S, Smith TA. An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 1992; 89: 10 989 –10 992.
  • [122] He ZH, Cheeseman I, He D, Kohorn BD. A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 1999; 39: 1189–1196.
  • [123] Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 2001; 47: 197–206.
  • [124] De Lorenzo G, Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 2002; 5: 295–299.
  • [125] De Lorenzo G, D’Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 2001; 39: 313–335.
  • [126] Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P. Host-Pathogen Interactions. Plant Physiol 1989; 90: 542–548.
  • [127] Jones JD. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 2001; 4: 281–287.
  • [128] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11: 725–732.
  • [129] Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defence. Proc Natl Acad Sci USA 2003; 100: 10124–10128.
  • [130] Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. 2015; 20(6): 146. doi: 10.3389/fpls.2015.00146. eCollection 2015.
  • [131] Kohorn BD, Kohorn SL. The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 2012; 3: 88. doi:10.3389/fpls.2012.00088.
  • [132] Kohorn BD. Cell wall-associated kinases and pectin perception, J Exp Bot 2016; 67(2): 489–494, https://doi.org/10.1093/jxb/erv467.
  • [133] Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 2008; 1: 423–445.
  • [134] Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 2013; 4: 49.
  • [135] Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 2015; 112: 5533–5538.
  • [136] Anderson EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes , 2018; 9: 339. doi:10.3390/genes9070339.
  • [137] De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F. Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 2011; 585: 1521–1528.
  • [138] Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 2000; 122(4): 1379-1385.
  • [139] Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 2008; 148(3): 1695-706.
  • [140] Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O'Neill M, Albersheim P, Darvill A. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1991; 1: 333–343.
  • [141] Thain JF, Gubb IR, Wildon DC. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ 1995; 18: 211–214.
  • [142] Davis KR, Darvill AG, Albersheim P, Dell A. Host-Pathogen Interactions: XXIX. Oligogalacturonides Released from Sodium Polypectate by Endopolygalacturonic Acid Lyase Are Elicitors of Phytoalexins in Soybean. Plant Physiol 1986; 80(2): 568-77.
  • [143] Aziz A, Heyraud A, Lambert B. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 2004; 218(5): 767-74.
  • [144] Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 2007; 144(1): 367-379.
  • [145] Hematy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Hofte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 2007; 17: 922–931.
  • [146] Hematy K, Hofte H. Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 2008; 11: 321–328.
  • [147] Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 2009; 106: 7648–7653.
  • [148] Guo H, Ye H, Li L, Yin Y. A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 2009; 4: 784–786.
  • [149] Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 2009; 19: 1327–1331.
  • [150] Wolf S, van der Does D, Ladwig F, et al. A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proc Natl Acad Sci USA 2014; 111: 15261–15266.
  • [151] Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 2014; 343: 408–411.
  • [152] Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 2014; 24: 1887–1892.
  • [153] Wolf S, Hofte H. Growth control: a saga of cell walls, ros, and peptide receptors. Plant Cell 2014; 26: 1848–1856.
  • [154] Gust AA, Pruitt R, Nürnberger T. Sensing danger: Key to activating plant immunity. Trends Plant Sci 2017; 22: 779–791.

BİTKİ İMMÜN RESEPTÖRLERİ

Year 2020, , 125 - 145, 31.01.2020
https://doi.org/10.18036/estubtdc.524185

Abstract

 

Bütün canlı organizmalar hücresel düzeyde, farklı kategorilerdeki hücre
yüzey reseptörleri aracılığı ile bir informasyonu algılar ve yönlendirirler.
Hayvanlarda bulunan adaptif immun mekanizma bitkilerde bulunmamaktadır. Doğal
immün (innate immune) sisteme sahip olan bitkiler yabancı molekülleri hücre yüzey
reseptörleri aracılığı ile fark ederler. Bitki hücre-yüzey reseptörleri olan
PRR ‘ler, reseptör benzeri kinazlar (RLK) ve reseptör benzeri proteinlerden
(RLP) ibarettir. Hücre, doku ve organların gelişimi için önemli olan RLK ‘lar
(ve RLP) bitki immün sisteminin ilk savunma hattını oluşturmaktadırlar ve aynı
zamanda bitkilerin simbiyotik interaksiyon kurmalarına da olanak sağlamaktadır.
Çevresel zararlı bir uyarıcının, bitki membran-yüzey reseptörleri aracılığı ile
hücre dışından hücre içine nasıl transfer edildiğini anlamak amacıyla
reseptörlerin yapı-fonksiyon ilişkilerinin ele alındığı bu kısa derleme çalışması
bitki immün mekanizmaların kolayca anlaşılmasında önemli bir hazırlık adımı
olacaktır.



References

  • [1] Macho AP, Zipfel C. Plant PRRs and the Activation of Innate Immune Signaling. Mol Cell 2014; 54(2): 263-72. doi: 10.1016/j.molcel.2014.03.028.
  • [2] Jones JD, Dangl JL. The plant immune system. Nature 2006; 444 (7117): 323–329.
  • [3] Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 2010; 11 (8): 539–548.
  • [4] Mackey D, McFall J. MAMPs and MIMIPs; Proposed Classification for Inducers of Innate Immunity. 2006; Mol Microbiol 61(6):1365–1371. doi:10.1111/j.1365-2958.2006.05311.x.
  • [5] Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 2008; 20: 10–16. DOI: 10.1016/j.coi.2007.11.003
  • [6] Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the Plant Immune System from Dissection to Deployment. Science (New York, NY). 2013; 341(6147): 746-751. doi:10.1126/science.1236011.
  • [7] Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 2012; 15: 349–357.
  • [8] Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003; 15: 809–834.
  • [9] Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124: 803–814.
  • [10] Tör M, Michael T. Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 2009; 60(13): 3645–3654. doi:10.1093/jxb/erp233.
  • [11] Ingle RA, Carstens M, Denby KJ. PAMP recognition and the plant–pathogen arms race. Bioessays 2006; 28: 880–889.
  • [12] Tör M. Tapping into molecular conversation between oomycete pathogens and their host plants. Eur J Plant Pathol 2008; 122: 57–69.
  • [13] Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 2004; 428: 764–767.
  • [14] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006; 125: 749–760.
  • [15] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60: 379-406.
  • [16] Takken FL, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 2012; 15: 375–384.
  • [17] Cui H, Tsuda K, Parker JE. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol 2015; 66: 487–511.
  • [18] Li X, Kapos P, Zhang Y. NLRs in plants. Curr Opin Immunol 2015; 32: 114-121.
  • [19] Jones JDG, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science 2016; 354: aaf6395.
  • [20] Li H, Zhang Z. Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks. Front Agr Sci Eng 2016; 3(2): 102–112. DOI : 10.15302/J-FASE-2016100.
  • [21] Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 2014; 20 :47–54. http://dx.doi.org/10.1016/j.pbi.2014.04.007.
  • [22] Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 2008; 319: 294.
  • [23] Bleecker AB, Kende H. Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 2000; 16: 1-18.
  • [24] Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001; 409: 1060-1063.
  • [25] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408: 796-815.
  • [26] Shiu SH, Bleecker AB. Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling. Sci STKE, 2001; (113) re22. DOI: 10.1126/stke.2001.113.re22.
  • [27] Zipfel C. Plant pattern-recognition receptors. Trends Immunol 2014; 35: 345–351.
  • [28] Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69: 373-398.
  • [29] Couto DE, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 2016; 16: 537-552.
  • [30] Kirkbride KC, Ray BN, Blobe GC. Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem Sci 2005; 30/11: 611-621.
  • [31] Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017; 6: e25114. doi:10.7554/eLife.25114.
  • [32] Chandra A. The Role of ErbB3 Inhibitors as Cancer Therapeutics. Boston University, Massachusetts, USA, MSc, 2015. DOI:10.13140/RG.2.2.13547.34081.
  • [33] Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005; 139: 1107–1124.
  • [34] Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 2001; 98(19): 10763–10768.
  • [35] Shiu SH, Bleecker AB, 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132, 530–543.
  • [36] Shiu SH, Karlowski WM, Pan R. Tzeng YH, Mayer KF, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004; 16: 1220-1234.
  • [37] Haffani YZ, Silva NF, Goring DR. Receptor kinase signalling in plants. Can J Bot 2004; 82: 1-15.
  • [38] Herve C, Serres J, Dabos P, Canut H, Barre A, Rouge P, Lescure B. Characterization of the Arabidopsis lecRK-a genes: Members of a super-family encoding putative receptors with an extra-cellular domain homologous to legume lectins. Plant Mol Biol 1999; 4: 671-682.
  • [39] Chinchilla, D, Bauer Z, Regenass M, Boller T, Felix G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 2006; 18: 465–476.
  • [40] Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 2013; 342: 624–628.
  • [41] Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 2006; 103: 10104–10109.
  • [42] Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 2010; 107: 9452–9457.
  • [43] Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY. Stacey, G. Identification of a plant receptor for extracellular ATP. Science 2014; 343: 290–294.
  • [44] Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K., Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 2006; 103: 11086–11091.
  • [45] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 2007; 104: 19613–19618.
  • [46] Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono J-J, Cullimore JV, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA, 2011; 108: 19824–19829.
  • [47] Liu P, Du L, Huang YY, Gao S, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 2017; 17 :47. DOI 10.1186/s12862-017-0891-5.
  • [48] Dievart A, Clark SE. LRR-containing receptors regulating plant development and defense. Development 2004; 131: 251-261.
  • [49] Zhang XS, Choi JH, Heinz J, Chetty CS. Domain-specific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase LRR RLK. genes. J Mol Evol 2006; 63: 612-621.
  • [50] Krupa A, Preethi G, Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: Distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol 2004; 339: 1025-1039.
  • [51] Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2006; 2: 1-15.
  • [52] Adams JA. Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the auto inhibitor model? Biochemistry 2003; 42: 601-607.
  • [53] Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 2010; 285: 10454-10463.
  • [54] Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci USA 2010; 107: 8029-8034.
  • [55] Dardick C, Schwessinger B, Ronald P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 2012; 15: 358–366.
  • [56] He K, et al. BAK1 and BKK1 regulate brassinosteroid dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 2007; 17: 1109–1115.
  • [57] Kemmerling B, et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 2007; 17: 1116–1122.
  • [58] Chinchilla D, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 2007; 448: 497–500.
  • [59] Heese A, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 2007; 104: 12217–12222.
  • [60] Ingram GC. Cell signalling: the merry lives of BAK1. Curr Biol 2007; 17: 603–605.
  • [61] Kemmerling B, Nürnberger T. Brassinosteroid independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Signal Behav 2008; 3: 116–118.
  • [62] Vert G. Plant signaling: brassinosteroids, immunity and effectors are BAK! Curr Biol 2008; 18: 963–965.
  • [63] Chinchilla D, Shan L, He P, Vries S, Kemmerling B. One for all: the receptor-associated kinase BAK1. Trends Plant Sci 2009; 14(10): 535-541.
  • [64] Yang D-H, Hettenhausen C, Baldwin IT, Wu J. The multifaceted function of BAK1/SERK3: Plant immunity to pathogens and responses to insect herbivores. Plant Signal Behav 2011; 6(9): 1322-1324. doi:10.4161/psb.6.9.16438.
  • [65] Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 2002; 110: 213-222.
  • [66] Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 2002; 110(2): 203-212.
  • [67] Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 2001; 127(3): 803-16.
  • [68] Loris R. Principles of structures of animal and plant lectins. Biochim Biophys Acta 2002; 1572: 198–208.
  • [69] Buist G, Steen A, Kok J, Kuipers OP. LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 2008; 68: 838–847.doi: 10.1111/j.1365-2958.2008.06211.x.
  • [70] Peumans WJ, Van Damme EJM. Lectins as Plant Defense Proteins. Plant Physiol 1995; 109: 347-352.
  • [71] Van Damme EJ, Barre A, Rougé P, Peumans WJ. Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 2004; 9: 484-489. doi: 10.1016/j.tplants.2004.08.003.
  • [72] Liu Y, Li J. An in vivo invesgation of amino acid residues critical for the lectin function of arabidopsis calreticulin 3. Mol Plant 2013; 6: 985-987. doi:10.1093/mp/sss163.
  • [73] Goldstein IJ, Hayes CE. The lectins: Carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 1978; 35: 127-340.
  • [74] Chrispeels MJ, Raikhel NV. Lectins, Lectin Genes and Their Roles in Plant Defense. Plant Cell 1991; 3: 1-9.
  • [75] Van Damme EJM, Lannoo N, Peumans W. Plant lectins. Adv Bot Res 2008; 48: 107-209. Doi:10.1016/S0065-2296(08) 00403-5.
  • [76] Singh P, Zimmerli L. Lectin Receptor Kinases in Plant Innate Immunity. Front Plant Sci 2013; 4: 124. Doi: 10.3389/fpls.2013.00124.
  • [77] Vaid N, Macovei A, Tuteja N. Knights in activation: lectin receptor-like kinases in plant development and stress responses. Mol Plant 2013; 6: 1405-1418. Doi: 10.1093/mp/sst033.
  • [78] Bellande K, Bono JJ, Savelli B, Jamet E, Canut H. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18: 1164; doi:10.3390/ijms18061164.
  • [79] Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell Microbiol 2005; 7: 481-488. Doi: 10.1111/j.1462-5822.2005.00506.x.
  • [80] Bouwmeester K, Govers F. Arabidopsis L-type lectin receptor kinases: phylogeny classification and expression profiles. J Exp Bot 2009; 60: 4383-4396. Doi: 10.1093/jxb/erp277.
  • [81] Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, et al. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 2011; 7: e1001327. doi:10.1371/journal.ppat.1001327.
  • [82] Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, et al. The lectin-receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 2012; 24: 1256–1270. Doi: 10.1105/tpc.112.095778.
  • [83] Huang P, Ju H-W, Min J-H, Zhang X, Kim S-H, Yang K-Y, et al. Over expression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 2013; 203–204: 98–106. doi: 10.1016/j.plantsci.2012.12.019.
  • [84] Huang P-Y, Yeh Y-H, Liu A-C, Cheng C-P, Zimmerli L. The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 2014; 79: 243– 255. doi:10.1111/tpj.12557.
  • [85] Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herye C, Boutet E, et al. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 2003; 133: 1893–1910. doi:10.1104/pp.103.027680.
  • [86] Trontin C, Kiani S, Corwin J, Hematy K, Yansouni J, Kliebenstein D, Loudet O. A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana. Plant J 2014; 78: 121–133.
  • [87] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 2006; 46: 794–804.
  • [88] Kim H, Jung M, Lee S, Kim K, Byun H, Choi M, Park H, Cho M, Chung W. An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem. Biophys Res Commun 2009; 381: 424–428.
  • [89] Kim YT, Oh J, Kim KH, Uhm JY, Lee BM. Isolation and characterization of NgRLK1, a receptor-like kinase of Nicotiana glutinosa that interacts with the elicitin of Phytophthora capsici. Mol Biol Rep 2009; 37: 717–727. doi: 10.1007/s11033-009-9570-y.
  • [90] Gilardoni P, Hettenhausen C, Baldwin I, Bonaventure G. Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell Environ 2011; 23: 3512–3532.
  • [91] Cheng X, Wu Y, Guo J, Du B, Chen R, Zhu L, He G. A rice lectin receptor-like kinase is involved in innate immune responses also contributes to seed germination. Plant J 2013; 76: 687–698.
  • [92] Cole S, Diener A. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 2013; 200: 172–184.
  • [93] Guidarelli M, Zoli L, Orlandini A, Bertolini P, Baraldi E. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Mol Plant Pathol 2014; 15: 832–840.
  • [94] Hwang I, Hwang B. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol2014; 155: 447–463.
  • [95] Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel Y, Sanchez-Carballo P, Zahringer U, Huckelhoven R, Lee J, et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 2015; 16: 426–433.
  • [96] Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, et al. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 2007; 19: 94–106. doi:10.1105/tpc.106.048199.
  • [97] Ivanov R, Fobis-Loisy I, Gaude T. When no means no: Guide to Brassicaceae self-incompatibility. Trends Plant Sci 2010; 15: 387–394.
  • [98] Nasrallah JB, Nasrallah M. S-locus receptor kinase signalling. Biochem Soc Trans 2014; 42: 313–319.
  • [99] Deb S, Sankaranarayanan S, Wewala G, Widdup E, Samuel M. The S-domain receptor kinase Arabidopsis receptor kinase2 and the U box/armadillo repeat-containing E3 ubiquitin ligase9 module mediates lateral root development under phosphate starvation in Arabidopsis. Plant Physiol 2014; 165: 1647–1656.
  • [100] Ringli C. Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol 2010; 153: 1445–52.
  • [101] Seifert GJ, Blaukopf C. Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 2010; 153: 467–78.
  • [102] Steinwand BJ, Kieber JJ. The role of receptor-like kinases in regulating cell wall function. Plant Physiol 2010; 153: 479–84.
  • [103] Wolf S, Mravec J, Greiner S, Mouille G, Hofte H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 2012; 22: 1732–1737.
  • [104] Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 2012; 17: 495–502.doi:10.1016/j.tplants.2012.04.003.
  • [105] Lannoo N, Van Damme EJ. Lectin domains at the frontiers of plant defense. Front Plant Sci 2014; 5: 397.
  • [106] Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 2010; 285: 28902–28911.doi:10.1074/jbc.M110.116657.
  • [107] Tanaka K, Nguyen CT, Liang Y, Cao Y, Stacey G. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal Behav 2013; 8: e22598. doi:10.4161/psb.22598.
  • [108] Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-induced dimerization activates a plant immune receptor. Science 2012; 336: 1160–1164. doi: 10.1126/science.1218867.
  • [109] Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al. Two LysM recepto rmolecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 2010; 64: 204–214.doi:10.1111/j.1365- 313X.2010.04324.x.
  • [110] Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, et al. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 2012; 53: 1696–1706.doi:10.1093/pcp/pcs113.
  • [111] Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA 2014; 111: E404–E413. doi:10.1073/pnas.1312099111.
  • [112] Kouzai Y, Nakajima K, Hayafune M, Ozawa K, Kaku H, Shibuya N, et al. CEBiP is the majör chitin oligomers-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol 2014; 84: 519–528.doi: 10.1007/s11103-013-0149-6.
  • [113] de Jonge R, van Esse HP, Kombrink A, Shinya, T, Desaki, Y, Bours, R, van der Krol S, Shibuya, N, Joosten MH, Thomma BP. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010; 329: 953–955.
  • [114] Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 2004; 16: 1604–1615.
  • [115] Fliegmann J, Mithöfer A, Wanner G, Ebel J. An ancient enzyme domain hidden in the putative _-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 2004; 279: 1132–1140.
  • [116] Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch, G, Keizer, LP, Zhou J, Liebrand TW, Xie C, Govers F, Robatzek S,. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 2015; 1: 15034.
  • [117] Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor tu elicits innate immunity in Arabidopsis plants. Plant Cell 2004; 16: 3496–3507.
  • [118] Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282: 32338–32348.
  • [119] Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 2016; 211: 1008–1019.
  • [120] Prince DC, Drurey C, Zipfel C, Hogenhout SA. The leucine-rich repeat receptor-like kinase brassinosteroid insensitive1-associated kinase1 and the cytochrome p450 phytoalexin deficient 3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol 2014; 164: 2207–2219.
  • [121] Kohorn BD, Lane S, Smith TA. An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 1992; 89: 10 989 –10 992.
  • [122] He ZH, Cheeseman I, He D, Kohorn BD. A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 1999; 39: 1189–1196.
  • [123] Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 2001; 47: 197–206.
  • [124] De Lorenzo G, Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 2002; 5: 295–299.
  • [125] De Lorenzo G, D’Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 2001; 39: 313–335.
  • [126] Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P. Host-Pathogen Interactions. Plant Physiol 1989; 90: 542–548.
  • [127] Jones JD. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 2001; 4: 281–287.
  • [128] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11: 725–732.
  • [129] Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defence. Proc Natl Acad Sci USA 2003; 100: 10124–10128.
  • [130] Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. 2015; 20(6): 146. doi: 10.3389/fpls.2015.00146. eCollection 2015.
  • [131] Kohorn BD, Kohorn SL. The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 2012; 3: 88. doi:10.3389/fpls.2012.00088.
  • [132] Kohorn BD. Cell wall-associated kinases and pectin perception, J Exp Bot 2016; 67(2): 489–494, https://doi.org/10.1093/jxb/erv467.
  • [133] Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 2008; 1: 423–445.
  • [134] Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 2013; 4: 49.
  • [135] Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 2015; 112: 5533–5538.
  • [136] Anderson EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes , 2018; 9: 339. doi:10.3390/genes9070339.
  • [137] De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F. Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 2011; 585: 1521–1528.
  • [138] Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 2000; 122(4): 1379-1385.
  • [139] Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 2008; 148(3): 1695-706.
  • [140] Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O'Neill M, Albersheim P, Darvill A. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1991; 1: 333–343.
  • [141] Thain JF, Gubb IR, Wildon DC. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ 1995; 18: 211–214.
  • [142] Davis KR, Darvill AG, Albersheim P, Dell A. Host-Pathogen Interactions: XXIX. Oligogalacturonides Released from Sodium Polypectate by Endopolygalacturonic Acid Lyase Are Elicitors of Phytoalexins in Soybean. Plant Physiol 1986; 80(2): 568-77.
  • [143] Aziz A, Heyraud A, Lambert B. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 2004; 218(5): 767-74.
  • [144] Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 2007; 144(1): 367-379.
  • [145] Hematy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Hofte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 2007; 17: 922–931.
  • [146] Hematy K, Hofte H. Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 2008; 11: 321–328.
  • [147] Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 2009; 106: 7648–7653.
  • [148] Guo H, Ye H, Li L, Yin Y. A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 2009; 4: 784–786.
  • [149] Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 2009; 19: 1327–1331.
  • [150] Wolf S, van der Does D, Ladwig F, et al. A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proc Natl Acad Sci USA 2014; 111: 15261–15266.
  • [151] Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 2014; 343: 408–411.
  • [152] Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 2014; 24: 1887–1892.
  • [153] Wolf S, Hofte H. Growth control: a saga of cell walls, ros, and peptide receptors. Plant Cell 2014; 26: 1848–1856.
  • [154] Gust AA, Pruitt R, Nürnberger T. Sensing danger: Key to activating plant immunity. Trends Plant Sci 2017; 22: 779–791.
There are 154 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Berna Baş 0000-0003-2455-2849

Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Baş, B. (2020). BİTKİ İMMÜN RESEPTÖRLERİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 9(1), 125-145. https://doi.org/10.18036/estubtdc.524185
AMA Baş B. BİTKİ İMMÜN RESEPTÖRLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2020;9(1):125-145. doi:10.18036/estubtdc.524185
Chicago Baş, Berna. “BİTKİ İMMÜN RESEPTÖRLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9, no. 1 (January 2020): 125-45. https://doi.org/10.18036/estubtdc.524185.
EndNote Baş B (January 1, 2020) BİTKİ İMMÜN RESEPTÖRLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9 1 125–145.
IEEE B. Baş, “BİTKİ İMMÜN RESEPTÖRLERİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 1, pp. 125–145, 2020, doi: 10.18036/estubtdc.524185.
ISNAD Baş, Berna. “BİTKİ İMMÜN RESEPTÖRLERİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9/1 (January 2020), 125-145. https://doi.org/10.18036/estubtdc.524185.
JAMA Baş B. BİTKİ İMMÜN RESEPTÖRLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9:125–145.
MLA Baş, Berna. “BİTKİ İMMÜN RESEPTÖRLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 1, 2020, pp. 125-4, doi:10.18036/estubtdc.524185.
Vancouver Baş B. BİTKİ İMMÜN RESEPTÖRLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9(1):125-4.