Research Article
BibTex RIS Cite

Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI

Year 2020, , 1 - 12, 31.01.2020
https://doi.org/10.18036/estubtdc.526568

Abstract

Bu
çalışmada,
Zostera marina L. atık
biyoması ile sucul ortamdan model bir sentetik azo boyanın (basic red 46)
biyosorpsiyonu ilk kez araştırılmıştır. Deneysel veriler, boya gideriminin
önemli bir şekilde biyosorbent miktarı, boya konsantrasyonu ve temas süresine
bağlı olduğunu göstermiştir. Biyosorpsiyon kinetik verileri, yalancı birinci
mertebe, yalancı ikinci mertebe, Elovich ve parçacık içi difüzyon modelleri
kullanılarak analiz edilmiştir. Freundlich, Langmuir ve Dubinin-Radushkevich
modelleri, deneysel izoterm verilerini modellemek için kullanılmıştır.
Modelleme çalışmaları sonuçları, Elovich ve Freundlich modellerinin,
biyosorpsiyon kinetik ve izoterm verilerine en iyi uyumu sağladığını
göstermiştir. Termodinamik çalışmalar, biyosorpsiyon prosesinin doğasını ortaya
koymak için yapılmıştır ve elde edilen sonuçlar, biyosorpsiyon sisteminin,
spontan ve fiziksel bir doğaya sahip olduğuna işaret etmiştir. Elde edilen tüm
bulgular, bu doğal biyolojik atığın, su ortamından böyle kirletici ajanların
uzaklaştırılması için uygun maliyetli bir biyosorbent materyali olarak etkili
bir şekilde kullanılabileceğini göstermiştir.

References

  • [1] Santos SCR, Boaventura RAR. Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch mode. J Environ Chem Eng. 2016; 4: 1473-1483.
  • [2] Li C, Wang X, Meng D, Zhou L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int J Biol Macromol. 2018; 107: 1871-1878.
  • [3] Albadarin AB, Solomon S, Daher MA, Walker G. Efficient removal of anionic and cationic dyes from aqueous systems using spent Yerba Mate “Ilex paraguariensis”. J Taiwan Inst Chem Eng. 2018; 82: 144-155.
  • [4] Kuusemäe K, von Thenen M, Lange T, Rasmussen EK, Pothoff M, Sousa AI, et al. Agent Based Modelling (ABM) of eelgrass (Zostera marina) seedbank dynamics in a shallow Danish estuary. Ecol Model. 2018; 371: 60-75.
  • [5] Sousa AI, Valdemarsen T, Lillebø AI, Jørgensen L, Flindt MR. A new marine measure enhancing Zostera marina seed germination and seedling survival. Ecol Eng. 2017; 104: 131-140.
  • [6] Lagergren S. About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl. 1898; 24: 1-39.
  • [7] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006; 136: 681-689.
  • [8] Chien S, Clayton W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J. 1980; 44: 265-268.
  • [9] Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963; 89: 31-60.
  • [10] Freundlich HMF. Over the adsorption in solution. Z Phys Chem. 1906; 57: 385-470.
  • [11] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918; 40: 1361-1403.
  • [12] Dubinin MM, Radushkevich LV. Equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sec USSR. 1947; 55: 331-333.
  • [13] Nayak AK, Pal A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. J Environ Manage. 2017; 200: 145-159.
  • [14] Guo H, Bi C, Zeng C, Ma W, Yan L, Li K, et al. Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J Mol Liq. 2018; 249: 629-636.
  • [15] Reck IM, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod. 2018; 171: 85-97.
  • [16] Konicki W, Hełminiak A, Arabczyk W, Mijowska E. Adsorption of cationic dyes onto Fe@graphite core–shell magnetic nanocomposite: Equilibrium, kinetics and thermodynamics. Chem Eng Res Des. 2018; 129: 259-270.
  • [17] dos Santos A, Viante MF, Pochapski DJ, Downs AJ, Almeida CAP. Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant. J Hazard Mater. 2018; 355: 136-144.
  • [18] Rangabhashiyam S, Sujata L, Balasubramanian P. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces. 2018; 10: 197-215.
  • [19] Arris S, Bencheikh Lehocine M, Meniai A-H. Sorption study of chromium sorption from wastewater using cereal by-products. Int J Hydrogen Energy. 2016; 41: 10299-10310.
  • [20] Mokhtar N, Aziz EA, Aris A, Ishak WFW, Mohd Ali NS. Biosorption of azo-dye using marine macro-alga of Euchema spinosum. J Environ Chem Eng. 2017; 5: 5721-5731.
  • [21] Agarwal S, Gupta VK, Ghasemi M, Azimi-Amin J. Peganum harmala-L Seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J Mol Liq. 2017; 231: 296-305.
  • [22] Krishna LS, Yuzir A, Yuvaraja G, Ashokkumar V. Removal of Acid Blue25 from aqueous solutions using Bengal gram fruit shell (BGFS) biomass. Int J Phytorem. 2017; 19: 431-438.
Year 2020, , 1 - 12, 31.01.2020
https://doi.org/10.18036/estubtdc.526568

Abstract

References

  • [1] Santos SCR, Boaventura RAR. Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch mode. J Environ Chem Eng. 2016; 4: 1473-1483.
  • [2] Li C, Wang X, Meng D, Zhou L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int J Biol Macromol. 2018; 107: 1871-1878.
  • [3] Albadarin AB, Solomon S, Daher MA, Walker G. Efficient removal of anionic and cationic dyes from aqueous systems using spent Yerba Mate “Ilex paraguariensis”. J Taiwan Inst Chem Eng. 2018; 82: 144-155.
  • [4] Kuusemäe K, von Thenen M, Lange T, Rasmussen EK, Pothoff M, Sousa AI, et al. Agent Based Modelling (ABM) of eelgrass (Zostera marina) seedbank dynamics in a shallow Danish estuary. Ecol Model. 2018; 371: 60-75.
  • [5] Sousa AI, Valdemarsen T, Lillebø AI, Jørgensen L, Flindt MR. A new marine measure enhancing Zostera marina seed germination and seedling survival. Ecol Eng. 2017; 104: 131-140.
  • [6] Lagergren S. About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl. 1898; 24: 1-39.
  • [7] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006; 136: 681-689.
  • [8] Chien S, Clayton W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J. 1980; 44: 265-268.
  • [9] Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963; 89: 31-60.
  • [10] Freundlich HMF. Over the adsorption in solution. Z Phys Chem. 1906; 57: 385-470.
  • [11] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918; 40: 1361-1403.
  • [12] Dubinin MM, Radushkevich LV. Equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sec USSR. 1947; 55: 331-333.
  • [13] Nayak AK, Pal A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. J Environ Manage. 2017; 200: 145-159.
  • [14] Guo H, Bi C, Zeng C, Ma W, Yan L, Li K, et al. Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J Mol Liq. 2018; 249: 629-636.
  • [15] Reck IM, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod. 2018; 171: 85-97.
  • [16] Konicki W, Hełminiak A, Arabczyk W, Mijowska E. Adsorption of cationic dyes onto Fe@graphite core–shell magnetic nanocomposite: Equilibrium, kinetics and thermodynamics. Chem Eng Res Des. 2018; 129: 259-270.
  • [17] dos Santos A, Viante MF, Pochapski DJ, Downs AJ, Almeida CAP. Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant. J Hazard Mater. 2018; 355: 136-144.
  • [18] Rangabhashiyam S, Sujata L, Balasubramanian P. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces. 2018; 10: 197-215.
  • [19] Arris S, Bencheikh Lehocine M, Meniai A-H. Sorption study of chromium sorption from wastewater using cereal by-products. Int J Hydrogen Energy. 2016; 41: 10299-10310.
  • [20] Mokhtar N, Aziz EA, Aris A, Ishak WFW, Mohd Ali NS. Biosorption of azo-dye using marine macro-alga of Euchema spinosum. J Environ Chem Eng. 2017; 5: 5721-5731.
  • [21] Agarwal S, Gupta VK, Ghasemi M, Azimi-Amin J. Peganum harmala-L Seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J Mol Liq. 2017; 231: 296-305.
  • [22] Krishna LS, Yuzir A, Yuvaraja G, Ashokkumar V. Removal of Acid Blue25 from aqueous solutions using Bengal gram fruit shell (BGFS) biomass. Int J Phytorem. 2017; 19: 431-438.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Environmental Sciences
Journal Section Articles
Authors

Fatih Deniz 0000-0002-2771-2652

Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Deniz, F. (2020). Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 9(1), 1-12. https://doi.org/10.18036/estubtdc.526568
AMA Deniz F. Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2020;9(1):1-12. doi:10.18036/estubtdc.526568
Chicago Deniz, Fatih. “Zostera Marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9, no. 1 (January 2020): 1-12. https://doi.org/10.18036/estubtdc.526568.
EndNote Deniz F (January 1, 2020) Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9 1 1–12.
IEEE F. Deniz, “Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 1, pp. 1–12, 2020, doi: 10.18036/estubtdc.526568.
ISNAD Deniz, Fatih. “Zostera Marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9/1 (January 2020), 1-12. https://doi.org/10.18036/estubtdc.526568.
JAMA Deniz F. Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9:1–12.
MLA Deniz, Fatih. “Zostera Marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 1, 2020, pp. 1-12, doi:10.18036/estubtdc.526568.
Vancouver Deniz F. Zostera marina L. İLE SUCUL ORTAMDAN MODEL BİR SENTETİK AZO BOYANIN BİYOLOJİK GİDERİMİ: BİYOSORPSİYON SİSTEM MODELLEME ÇALIŞMALARI. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9(1):1-12.