Review
BibTex RIS Cite

MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION

Year 2020, , 284 - 303, 30.07.2020
https://doi.org/10.18036/estubtdc.656857

Abstract

In this last decade, the environmental problems of microplastics have been occupied a large place in the world scientific researches. The unbreakable property of these particles causes their rapid accumulation in the environment. Their micro and millimetric sizes let them to be distributed over the world in a way almost uncontrollable. Works are still multiplying in identification of the source and nature, in the fate and effects of the microplastics on the different ecosystems. The accumulation of these debris in our ecosystem is a serious problem in the way of their distribution and migration: from the aquatic to the terrestrial ecosystem, all food web class will be affected. Different solutions for escaping their over distribution in the world have been studied. However, the biodegradation of this tiny particles seems the perfect solution of their disappearance from our environments. Studies seem slowly progressed because of different types of microplastics and the unknown mechanism of most of microorganisms on the surface of microplastics. This review is a synthesis of works done in microplastics by offering a good comprehension in microplastics source, effects and biodegradation both in aquatic and terrestrial ecosystems. Researchers will have to expand their working fields by approaching to the extreme ecosystems such as caves in the hope of finding microorganisms capable of producing enzymes that will serve in a complete degradation of these debris.

References

  • [1] Alshehrei F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. Appl Environ Microb 2017; 5: 8-19.
  • [2] Shashoua Y. Conservation of Plastics: Materials Science, Degradation and Preservation. 1st ed. Amsterdam, Boston: Elsevier/Butterworth-Heinemann, 2008.
  • [3] An analysis of European plastics production, demand and waste data. Plastics – the Facts, Plastics Europe, Brussels, 2019.
  • [4] JPGL F, Nash R. Microplastics: Finding a consensus on the definition. Mar Pollut Bull 2019; 138: 145-147.
  • [5] Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, Jhon A.W.G, McGonigle D, Russell A.E. Lost at Sea: Where Is All the Plastic? Science 2004; 304: 777-908.
  • [6] GESAMP. Sources, fate and effects of microplastics in the marine environment: A global assessment (Kershaw, P.J., ed.). (IMO/ FAO/ UNESCO-IOC/ UNIDO/ WMO/ IAEA/ UN/ UNEP/ UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP 2015. No. 90, 96p.
  • [7] Ramesh VK, Pramila R, Padmavanthy K, Mahalakshmi K. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis - Potential candidates for biodegradation of low density polyethylene (LDPE). Bacteriol Res 2012; 4 :9-14.
  • [8] Lusher A. L, Tirelli V, O’Connor I. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep-UK 2015; 5.
  • [9] Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep-UK 2014; 4.
  • [10] Wagner M, Scherer C, Alvarez- Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak AD, Winther-Nielsen M, Reifferscheid G. Microplastics in freshwater ecosystems: what we know and what we need to know. Eviron Sci Eur 2016; 26: 12.
  • [11] Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 2011; 62: 2588-2597.
  • [12] Costa MF, Ivar do Sul JA, Silva-Cavalcanti JS, Araújo M.C.B, Spengler A, Tourinho P. S.On the importance of size of plastic fragments and pellets on the strandline: a snapshot of a Brazilian beach. Environ Monit Assess 2010; 168: 299-304.
  • [13] Fendall LS, Swell MA. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar Pollut Bull 2009; 58: 1225–1228.
  • [14] Lesli H.A. Review of Microplastics in Cosmetics. Inst Env R 2014.
  • [15] Gouin T, Avalos J, Burnning I, Brzuska K, Graaf de J, Kaumanns J, Konong T, Meyberg M, Rettinger K, Schlatter H, Thomas J, Welie van R, Wilf T. Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. J SOFW 2015;144:1-33.
  • [16] Hernandez LM, Yousefi N, Tufenkji N. Are There Nanoplastics in Your Personal Care Products? EnvironN Sci Technol Lett 2017; 4:280-285.
  • [17] International Maritime Organization, IMO. Plastic particles in the ocean may be as harmful as plastic bags, report says. International Maritime Organization Press Briefing Archives, 2015.
  • [18] Andrady AL. Microplastics in the marine environment. Mar Pollut Bull 2011; 62: 1596-1605.
  • [19] Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 2008; 73:429-442.
  • [20] Mailhot B, Morlat S, Gardette JL. Photooxidation of blends of polystyrene and poly (vinyl methyl ether): FTIR and AFM studies. Polymer2000; 41: 1981-1988.
  • [21] Li WC, Tse HF, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci Total Environ 2016; 566-567: 333-349.
  • [22] Barnes D.K.A, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos T R Soc B 2009; 364:1985-1998.
  • [23] Zheng Y, Yanful EK, Bassi AS. A Review of Plastic Waste Biodegradation. Crit Rev Biotechnol 2005; 25:243-250.
  • [24] Gnanavel G, Mohana Jeya Valli VP, Thrirumarimurugan M, Kannadasan T. Degradation of polyethylene in the natural environment. INT J Res Eng Technol 2014; 2: 1-4.
  • [25] Alauddin A, Choudhoury IA, El Baradie MA, Hashmi M.S.J. Plastics and their machining: A review. J Mater Process Tech 1995; 54: 40-46.
  • [26] Scott G. Polymer in modern life. In: Scott G, editor. Polymers and the environment. Cambridge Royal Society of Chemistry, 2003. pp. 1-18.
  • [27] Eriksson C, Burton Harry, Fitch S, Schulz M, Van Den Hoff J. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Mar Pollut Bull 2013; 66: 199-208.
  • [28] Alomar C, Estarellas F, Deudero S. Microplastics in theMediterranean Sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar Environ Res 2016; 111: 1-10.
  • [29] Andrady AL. Microplastics in the larine environment. Mar Environ Res 2011; 62: 1596-1605.
  • [30] Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater Treatment Works (WwTw) as a Source of Microplastics in the Aquatic Environment. Environ Sci Technol Lett 2016; 50: 5800-5808.
  • [31] Reed S, Clark M, Thompson R, Hughes KA. Microplastics in marine sediments near Rothera Research Station, Antarctica. Mar Pollut Bull 2018; 133: 460-463.
  • [32] Good TP, June JA, Etnier MA, Broadhurst G. Derelict fishing nets in Puget Sound and the Northwest Straits: Patterns and Threats to marine fauna. Mar Pollut Bull 2010; 60:39-50.
  • [33] Doyle MJ, Watson W, Bowlin NM. Sheavly S.B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific-ocean. Mar Environ Res 2011; 71: 41-52.
  • [34] Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 2011; 62: 197-200.
  • [35] Lambert S, Wagner M. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. In: Wagner M., Lambert S, editors. Freshwater Microplastics. The Handbook of Environmental Chemistry, Springer, Cham, 2018. pp: 1-23.
  • [36] Klein S, Dimzon IK, Eubeler J, Knepper TP. Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. In: Wagner M, Lambert S, editors. Freshwater Microplastics. The Handbook of Environmental Chemistry, Springer, Cham, 2018. pp: 51-67.
  • [37] Xiong X, Wu C, Elser JJ, Mei Z, Hap Y. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River–From inland to the sea. Sci Total Environ 2019; 659: 66-73.
  • [38] Peng G, Xu P, Zhu B, Bai M, Li D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ Pollut 2018; 234: 448-456.
  • [39] Kamcikova G, Alic B, Bundschuh M, Gotvajn AZ. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 2017; 188: 25-31.
  • [40] Li J, Liu H, Chen P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res 2018; 137: 362-374.
  • [41] Horton AA, Walton A, Spurgeon DJ? Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017; 586: 127-141.
  • [42] Habib D, Locke DC, Cannone LJ. Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents. Water Air Soil Poll 1998; 103: 1-8.
  • [43] Zubris K.A.V, Richards B.K. Synthetic fibers as an indicator of land application of sludge. Environ Pollut 2005; 138: 201-211.
  • [44] Magnusson K, Norén F. Screening of Microplastic Particles in and Downstream a Wastewater Treatment Plant. IVL Swedish Environmental Research Institute 2014.
  • [45] Mintening S, Int-Veen I, Löder M.G.J, Primpke S, Gredts G. Identification of microplastic in effluents of wastewater treatment plants using focal plane. Water Res 2016; 1-8.
  • [46] Kowalczyk A, Chyc M, Ryszka P, Latowski D. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ Sci Pollut R 2016; 23:11349-11356.
  • [47] Farzi A, Dehnad A, Shirzad N, Norouzifard F. Biodegradation of high density polyethylene using Streptomyces species. J. Coast Life Med 2017; 11: 474-479.
  • [48] Devi RS, Ramya R, Kannan K, Antony AR, Kannan VR. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 2019; 138: 549-560.
  • [49] Awasthi S, Srivastva P, Singh P, Tiwary D, Mishra PK. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 2017; 7:332.
  • [50] Devi RS, Kannan VR, Nivas D, Kannan K, Chandru S, Antony AR. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar Pollut Bull 2015; 96: 1-2.
  • [51] Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM; Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeter Biodegr 2015; 105: 21-29.
  • [52] Montazer Z, Habibi-Najafi MB, Mohebbi M, omromiehei A. Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil. J Polym Environ 2018; 26: 3613-3625.
  • [53] Muhonja CN, Makonde H, Magoma G, Imbuga M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Plos One 2018; 13: 0198446.
  • [54] Bardají K. R, Furlan J.P.R, Stehling E, G. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 2019; 201: 699-704.
  • [55] Syranidou E, Karkanorachaki K, Amorotti F, Repouskou E, Kroll K, Kolvenbach B, Corvini P, Fabio Fava, Kalogerakis N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. Plos One 2017; 12: 0183984.
  • [56] Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 2013; 77: 100-106.
  • [57] Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, Zhang W. Biodegradation of Polyethylene by Enterobacter sp. D1 from the Guts of Wax Moth Galleria mellonella. Int J Env Res Pun He 2019; 16: 1941.
  • [58] Paço A, Duarte K, Da Costa JP, Santos P.S.M, Pereira R, Pereira M.E, Freita AC, Duarte AC, Rocha-Santos T.A.P. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 2017; 586: 10-15.
  • [59] Shahnawaz M, Sangale MK, Ade AB. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ Sci Pollut R 2016; 23: 14621-14635.
  • [60] Aravinthan A, Arkatkar A, Asha A. Juwarkar AA, Doble M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep Biochem Biotech 2016; 46: 109-115.
  • [61] Jeon HJ, Kim NM. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int Biodeter Biodegr 2016; 115: 244-249.
  • [62] Auta HS, Emenike CU, Jayanthi B, Fauziah SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. And Rhodococcus sp. isolated from mangrove sediment; Mar Pollu Bull 2018; 127: 15-21.
  • [63] (Orr) IG, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biot 2004; 65: 97-104.
  • [64] Mor R, Sivan A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 2008; 19: 851-858.
  • [65] Hwang JW, Choi YC, Park S, Lee EY. Biodegradation of gaseous styrene by Brevibacillus sp. using a novel agitating biotrickling filter. Biotechnol Lett 2008; 30: 1207-1212.
  • [66] Mohan AJ, Sekhar VC, Bhaskar T, Nampoothiri KM. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technol 2016; 213: 204-207.
  • [67] Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol 2019; 52: 36-41.
  • [68] León-Zayas R, Roberts C, Vague M, Mellies JL. Draft Genome Sequences of Five Environmental Bacterial Isolates That Degrade Polyethylene Terephthalate Plastic. Microbiol Resour Announc 2019; 5: e00237-19.
  • [69] Oberbeckmann S, Osborn A. M, Duhaime MB. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris Plos One 2016; 11: e0159289.
  • [70] Horton AA, Waton A, Spurgeon DJ, Lahvive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017; 586: 127-141.
  • [71] Hartline NL, Bruce NJ, Karba SN, Ruff EO, Sonar SU, Holden PA. Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Sci Technol Lett 2016; 50: 11532-11538.
  • [72] He D, Luo Y, Lu S, Liu M, Song Y, Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trac-trend Anal Chem 2018; 109: 163-172.
  • [73] Blasing M, Amelung W. Plastics in soil: analytical methods and possible sources. Sci Total Environ 2018; 612: 422-435.
  • [74] Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 2015; 12: 592-599.
  • [75] Maaß S, Daphi D, Lehmann A, Rilling MC. Transport of microplastics by two collembolan species. Envrion Pollut 2017; 225: 456-459.
  • [76] Restrepo-Flórez J, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene – A review. Int Biodeter Biodegr 2014; 88: 83-90.
  • [77] Caruso G. Plastic Degrading Microorganisms as a Tool for Bioremediation of Plastic Contamination in Aquatic Environments J Pollut Eff Cont 2015; 3:3.
  • [78] Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava- Saucedo J. Polymer biodegradation: Mechanisms and estimation techniques- A review. Chemosphere 2008; 73: 429-442.
  • [79] Auta H.S, Emenike CU, Fauziah SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Eviron Pollut 2017; 231: 1552-1559.
  • [80] Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene- degrading bacterium Rhodococcus ruber. Appl Microbiol Biot 2006; 72: 346-352.
  • [81] Ruiz C, Main T, Hilliard N, Howard GT. Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. Int Biodeter Biodegr 1999; 43: 43-47.
  • [82] Russel JR. Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 2011; 77: 6076-6084.
  • [83] Allen AB, Hilliard NP, Howard GT. Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. Int Biodeter Biodegr 1999; 43: 37-41.
  • [84] Howard GT, Blake RC. Growth of Pseudomonas fluorescens on a polyester-based polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeter Biodegr 1998; 42:7-12.
  • [85] Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 2005; 98: 1093-1100.
  • [86] Bhardwaj H, Gupta R, Tiwari A. Community of Microbial Enzymes Associated with Biodegradation of Plastics. J Polym Environ013; 21: 575-579.
  • [87] Jeon HJ, Kim MN. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation I Int Biodeter Biodegr 2015; 103: 141-146.
  • [88] Arkatkar A, Arutchelvi J, Uppara PV, Doble M, Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeter Biodegr 2009; 63:106-111.
  • [89] Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: A review. Environ Pollut 2013; 178: 483-492.
  • [90] Moore J.C. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ Res 2008; 108:131-139.
  • [91] Fossi MC, Panti C, Guerranti C, Coppola D, Giannetti M, Marsili L, Minutoli R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull 2012; 64: 2374-2379.
  • [92] Fox A, McGarity L, Bergen M. Global Scientific Study Finds Microscopic Plastic Fibers Contaminating Tap Water. Orb one world one story. Washington, USA, 2017. https://orbmedia.org/sites/default/files/Orb%20Media%20Microscopic%20Plastics%20Press%20Release%20SEP%205%202017.pdf
  • [93] Liu HF, Yang X.M, Liu G, Liang CT, Chen H, Ritsema CJ, Geissen VResponse of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017; 185: 907-917
  • [94] Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Microbial Symbioses with Microbes, Plants, and Animals. In: Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA, editors. Brock Biology of Microorganisms. Pearson, 2019. pp: 736.
  • [95] Yeates GW, Bongers T, De Goege R.G.M, Freckman DW, Georgieva SS. Feeding Habits in Soil Nematode Families and Genera--An Outline for Soil Ecologists. J Nematol 1993; 25: 315-331.
  • [96] Kirstein IV, Kirmizi S, Wichels A, Grain-Fernandez A, Erler R, Löder M, Gerdts G. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 2016; 120: 1-8.
  • [97] Viršek MK, Koren M.N L.Š. Microplastics as a vector for the transport of the bacterial fish pathogens species Aeromonas salmonicida. Mar Pollut Bull 2017; 125: 301-309
  • [98] Zhang C, Chen X, Wang J, Tan L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ Pollut 2017; 220: 1282-1288.
  • [99] Mao Y, Ai H, Chen Y, Zhang Z, Zeng P, Kang L, Li W, Gu W, He Q, Li H. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018; 208: 50-68.
  • [100] Galgani F, Fleet D, Van Franeker J, Katsanevakis S, Maes T, Mouat J, Oosterbaan L, Poitou I, Hanke G, Thompson R, Amato E, Birkun A, Janssen C. MARINE STRATEGY FRAMEWORK DIRECTIVE Task Group 10 Report Marine litter. European Union, 2010.
  • [101] Lyakurwa DJ. Uptake and Effects of Microplastic Particles in Selected Marine Microalgae Species; Oxyrrhis marina and Rhodomonas baltica. MSc, Norwegian University of Science and Technology, Trondheim, Norweg, 2017.
  • [102] Bergami E, Pugnalini S, Vannucini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I. Long-term toxicity of surface-charged polystyrene nanoplastics to marineplanktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 2017; 189:159-169.
  • [103] He D, Luo Y, Lu S, Liu M, Song Y, Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trac-trend Anal Chem 2018; 109: 163-172.
  • [104] Rodriguez- Seijo A, Lourenço J, Rocha-Santos T.A.P, Da Costa J, Duarte AC, Vala H, Preira R. Histopathological and molecular effects of microplastics in Eisenia Andrei Bouché. Environ Pollut 2017; 220: 495-503.
  • [105] Lwanga EH, Vega JM, Quej VK, Chi J.L.A, Van der Plog L, Besseling E, Koelmans AA, Geissen V. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep-UK 2017; 7.
  • [106] Lwanga EH, Gertsen H, Gooren H, Peters P, Salani T, Van der Ploeg M, Besseling E, Koelmans AA, Geissen V. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Sci Total Environ 2016; 50: 2685-2691.
  • [107] Lei L, Wu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 2018; 619-620: 1-8.
  • [108] Lei L, Liu M, Song Y, Shibo L, Hu J, Cao C, Xie B, Shi H, He D. Polystyrene (nano)microplastics cause size dependent neurotoxicity, oxidative damages and other adverse effects in Caenorhabditis elegans. Environ Sci-nano 2018; 5: 2009-2020.
  • [109] Lambert S, Sinclair C, Boxall A. Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In: Whitacre D. editors. Reviews of Environmental Contamination and Toxicology. Springer, Charm, 2014. 227. pp 1-53.
  • [110] Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 2007; 8: 14-24.
  • [111] Falcão G.A.M, Almeida TG, Bardi M.A.G, Carvalho LH, Canedo E. L. PBAT/organoclay composite flms—part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polym Bull 2019; 76: 291-301.
  • [112] Sánchez-Avila J, Bonet J, Velasco G, Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Sci Total Environ 2009; 407: 4157-4167.
  • [113] Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R. Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut R 2013; 20: 8057-8076.
  • [114] Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017; 182: 781-793.
  • [115] Shimo M, Yamamoto H, Ninomiya K, Kato N, Adachi O, Aeyama M, Sakazawa C. Pyrroloquinone Quinone as an Essential Growth Factor for a poly(vinyl alcohol)-degrading Symbiont, Pseudomonas sp VM15C. Agr Biol Chem Tokyo 19884; 48: 2873-2876.

MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION

Year 2020, , 284 - 303, 30.07.2020
https://doi.org/10.18036/estubtdc.656857

Abstract

In this last decade, the environmental problems of microplastics have been occupied a large place in the world scientific researches. The unbreakable property of these particles causes their rapid accumulation in the environment. Their micro and millimetric sizes let them to be distributed over the world in a way almost uncontrollable. Works are still multiplying in identification of the source and nature, in the fate and effects of the microplastics on the different ecosystems. The accumulation of these debris in our ecosystem is a serious problem in the way of their distribution and migration: from the aquatic to the terrestrial ecosystem, all food web class will be affected. Different solutions for escaping their over distribution in the world have been studied. However, the biodegradation of this tiny particles seems the perfect solution of their disappearance from our environments. Studies seem slowly progressed because of different types of microplastics and the unknown mechanism of most of microorganisms on the surface of microplastics. This review is a synthesis of works done in microplastics by offering a good comprehension in microplastics source, effects and biodegradation both in aquatic and terrestrial ecosystems. Researchers will have to expand their working fields by approaching to the extreme ecosystems such as caves in the hope of finding microorganisms capable of producing enzymes that will serve in a complete degradation of these debris.

References

  • [1] Alshehrei F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. Appl Environ Microb 2017; 5: 8-19.
  • [2] Shashoua Y. Conservation of Plastics: Materials Science, Degradation and Preservation. 1st ed. Amsterdam, Boston: Elsevier/Butterworth-Heinemann, 2008.
  • [3] An analysis of European plastics production, demand and waste data. Plastics – the Facts, Plastics Europe, Brussels, 2019.
  • [4] JPGL F, Nash R. Microplastics: Finding a consensus on the definition. Mar Pollut Bull 2019; 138: 145-147.
  • [5] Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, Jhon A.W.G, McGonigle D, Russell A.E. Lost at Sea: Where Is All the Plastic? Science 2004; 304: 777-908.
  • [6] GESAMP. Sources, fate and effects of microplastics in the marine environment: A global assessment (Kershaw, P.J., ed.). (IMO/ FAO/ UNESCO-IOC/ UNIDO/ WMO/ IAEA/ UN/ UNEP/ UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP 2015. No. 90, 96p.
  • [7] Ramesh VK, Pramila R, Padmavanthy K, Mahalakshmi K. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis - Potential candidates for biodegradation of low density polyethylene (LDPE). Bacteriol Res 2012; 4 :9-14.
  • [8] Lusher A. L, Tirelli V, O’Connor I. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep-UK 2015; 5.
  • [9] Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep-UK 2014; 4.
  • [10] Wagner M, Scherer C, Alvarez- Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak AD, Winther-Nielsen M, Reifferscheid G. Microplastics in freshwater ecosystems: what we know and what we need to know. Eviron Sci Eur 2016; 26: 12.
  • [11] Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 2011; 62: 2588-2597.
  • [12] Costa MF, Ivar do Sul JA, Silva-Cavalcanti JS, Araújo M.C.B, Spengler A, Tourinho P. S.On the importance of size of plastic fragments and pellets on the strandline: a snapshot of a Brazilian beach. Environ Monit Assess 2010; 168: 299-304.
  • [13] Fendall LS, Swell MA. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar Pollut Bull 2009; 58: 1225–1228.
  • [14] Lesli H.A. Review of Microplastics in Cosmetics. Inst Env R 2014.
  • [15] Gouin T, Avalos J, Burnning I, Brzuska K, Graaf de J, Kaumanns J, Konong T, Meyberg M, Rettinger K, Schlatter H, Thomas J, Welie van R, Wilf T. Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. J SOFW 2015;144:1-33.
  • [16] Hernandez LM, Yousefi N, Tufenkji N. Are There Nanoplastics in Your Personal Care Products? EnvironN Sci Technol Lett 2017; 4:280-285.
  • [17] International Maritime Organization, IMO. Plastic particles in the ocean may be as harmful as plastic bags, report says. International Maritime Organization Press Briefing Archives, 2015.
  • [18] Andrady AL. Microplastics in the marine environment. Mar Pollut Bull 2011; 62: 1596-1605.
  • [19] Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 2008; 73:429-442.
  • [20] Mailhot B, Morlat S, Gardette JL. Photooxidation of blends of polystyrene and poly (vinyl methyl ether): FTIR and AFM studies. Polymer2000; 41: 1981-1988.
  • [21] Li WC, Tse HF, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci Total Environ 2016; 566-567: 333-349.
  • [22] Barnes D.K.A, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos T R Soc B 2009; 364:1985-1998.
  • [23] Zheng Y, Yanful EK, Bassi AS. A Review of Plastic Waste Biodegradation. Crit Rev Biotechnol 2005; 25:243-250.
  • [24] Gnanavel G, Mohana Jeya Valli VP, Thrirumarimurugan M, Kannadasan T. Degradation of polyethylene in the natural environment. INT J Res Eng Technol 2014; 2: 1-4.
  • [25] Alauddin A, Choudhoury IA, El Baradie MA, Hashmi M.S.J. Plastics and their machining: A review. J Mater Process Tech 1995; 54: 40-46.
  • [26] Scott G. Polymer in modern life. In: Scott G, editor. Polymers and the environment. Cambridge Royal Society of Chemistry, 2003. pp. 1-18.
  • [27] Eriksson C, Burton Harry, Fitch S, Schulz M, Van Den Hoff J. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Mar Pollut Bull 2013; 66: 199-208.
  • [28] Alomar C, Estarellas F, Deudero S. Microplastics in theMediterranean Sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar Environ Res 2016; 111: 1-10.
  • [29] Andrady AL. Microplastics in the larine environment. Mar Environ Res 2011; 62: 1596-1605.
  • [30] Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater Treatment Works (WwTw) as a Source of Microplastics in the Aquatic Environment. Environ Sci Technol Lett 2016; 50: 5800-5808.
  • [31] Reed S, Clark M, Thompson R, Hughes KA. Microplastics in marine sediments near Rothera Research Station, Antarctica. Mar Pollut Bull 2018; 133: 460-463.
  • [32] Good TP, June JA, Etnier MA, Broadhurst G. Derelict fishing nets in Puget Sound and the Northwest Straits: Patterns and Threats to marine fauna. Mar Pollut Bull 2010; 60:39-50.
  • [33] Doyle MJ, Watson W, Bowlin NM. Sheavly S.B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific-ocean. Mar Environ Res 2011; 71: 41-52.
  • [34] Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 2011; 62: 197-200.
  • [35] Lambert S, Wagner M. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. In: Wagner M., Lambert S, editors. Freshwater Microplastics. The Handbook of Environmental Chemistry, Springer, Cham, 2018. pp: 1-23.
  • [36] Klein S, Dimzon IK, Eubeler J, Knepper TP. Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. In: Wagner M, Lambert S, editors. Freshwater Microplastics. The Handbook of Environmental Chemistry, Springer, Cham, 2018. pp: 51-67.
  • [37] Xiong X, Wu C, Elser JJ, Mei Z, Hap Y. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River–From inland to the sea. Sci Total Environ 2019; 659: 66-73.
  • [38] Peng G, Xu P, Zhu B, Bai M, Li D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ Pollut 2018; 234: 448-456.
  • [39] Kamcikova G, Alic B, Bundschuh M, Gotvajn AZ. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 2017; 188: 25-31.
  • [40] Li J, Liu H, Chen P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res 2018; 137: 362-374.
  • [41] Horton AA, Walton A, Spurgeon DJ? Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017; 586: 127-141.
  • [42] Habib D, Locke DC, Cannone LJ. Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents. Water Air Soil Poll 1998; 103: 1-8.
  • [43] Zubris K.A.V, Richards B.K. Synthetic fibers as an indicator of land application of sludge. Environ Pollut 2005; 138: 201-211.
  • [44] Magnusson K, Norén F. Screening of Microplastic Particles in and Downstream a Wastewater Treatment Plant. IVL Swedish Environmental Research Institute 2014.
  • [45] Mintening S, Int-Veen I, Löder M.G.J, Primpke S, Gredts G. Identification of microplastic in effluents of wastewater treatment plants using focal plane. Water Res 2016; 1-8.
  • [46] Kowalczyk A, Chyc M, Ryszka P, Latowski D. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ Sci Pollut R 2016; 23:11349-11356.
  • [47] Farzi A, Dehnad A, Shirzad N, Norouzifard F. Biodegradation of high density polyethylene using Streptomyces species. J. Coast Life Med 2017; 11: 474-479.
  • [48] Devi RS, Ramya R, Kannan K, Antony AR, Kannan VR. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 2019; 138: 549-560.
  • [49] Awasthi S, Srivastva P, Singh P, Tiwary D, Mishra PK. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 2017; 7:332.
  • [50] Devi RS, Kannan VR, Nivas D, Kannan K, Chandru S, Antony AR. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar Pollut Bull 2015; 96: 1-2.
  • [51] Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM; Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeter Biodegr 2015; 105: 21-29.
  • [52] Montazer Z, Habibi-Najafi MB, Mohebbi M, omromiehei A. Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil. J Polym Environ 2018; 26: 3613-3625.
  • [53] Muhonja CN, Makonde H, Magoma G, Imbuga M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Plos One 2018; 13: 0198446.
  • [54] Bardají K. R, Furlan J.P.R, Stehling E, G. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 2019; 201: 699-704.
  • [55] Syranidou E, Karkanorachaki K, Amorotti F, Repouskou E, Kroll K, Kolvenbach B, Corvini P, Fabio Fava, Kalogerakis N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. Plos One 2017; 12: 0183984.
  • [56] Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 2013; 77: 100-106.
  • [57] Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, Zhang W. Biodegradation of Polyethylene by Enterobacter sp. D1 from the Guts of Wax Moth Galleria mellonella. Int J Env Res Pun He 2019; 16: 1941.
  • [58] Paço A, Duarte K, Da Costa JP, Santos P.S.M, Pereira R, Pereira M.E, Freita AC, Duarte AC, Rocha-Santos T.A.P. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 2017; 586: 10-15.
  • [59] Shahnawaz M, Sangale MK, Ade AB. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ Sci Pollut R 2016; 23: 14621-14635.
  • [60] Aravinthan A, Arkatkar A, Asha A. Juwarkar AA, Doble M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep Biochem Biotech 2016; 46: 109-115.
  • [61] Jeon HJ, Kim NM. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int Biodeter Biodegr 2016; 115: 244-249.
  • [62] Auta HS, Emenike CU, Jayanthi B, Fauziah SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. And Rhodococcus sp. isolated from mangrove sediment; Mar Pollu Bull 2018; 127: 15-21.
  • [63] (Orr) IG, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biot 2004; 65: 97-104.
  • [64] Mor R, Sivan A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 2008; 19: 851-858.
  • [65] Hwang JW, Choi YC, Park S, Lee EY. Biodegradation of gaseous styrene by Brevibacillus sp. using a novel agitating biotrickling filter. Biotechnol Lett 2008; 30: 1207-1212.
  • [66] Mohan AJ, Sekhar VC, Bhaskar T, Nampoothiri KM. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technol 2016; 213: 204-207.
  • [67] Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol 2019; 52: 36-41.
  • [68] León-Zayas R, Roberts C, Vague M, Mellies JL. Draft Genome Sequences of Five Environmental Bacterial Isolates That Degrade Polyethylene Terephthalate Plastic. Microbiol Resour Announc 2019; 5: e00237-19.
  • [69] Oberbeckmann S, Osborn A. M, Duhaime MB. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris Plos One 2016; 11: e0159289.
  • [70] Horton AA, Waton A, Spurgeon DJ, Lahvive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017; 586: 127-141.
  • [71] Hartline NL, Bruce NJ, Karba SN, Ruff EO, Sonar SU, Holden PA. Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Sci Technol Lett 2016; 50: 11532-11538.
  • [72] He D, Luo Y, Lu S, Liu M, Song Y, Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trac-trend Anal Chem 2018; 109: 163-172.
  • [73] Blasing M, Amelung W. Plastics in soil: analytical methods and possible sources. Sci Total Environ 2018; 612: 422-435.
  • [74] Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 2015; 12: 592-599.
  • [75] Maaß S, Daphi D, Lehmann A, Rilling MC. Transport of microplastics by two collembolan species. Envrion Pollut 2017; 225: 456-459.
  • [76] Restrepo-Flórez J, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene – A review. Int Biodeter Biodegr 2014; 88: 83-90.
  • [77] Caruso G. Plastic Degrading Microorganisms as a Tool for Bioremediation of Plastic Contamination in Aquatic Environments J Pollut Eff Cont 2015; 3:3.
  • [78] Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava- Saucedo J. Polymer biodegradation: Mechanisms and estimation techniques- A review. Chemosphere 2008; 73: 429-442.
  • [79] Auta H.S, Emenike CU, Fauziah SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Eviron Pollut 2017; 231: 1552-1559.
  • [80] Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene- degrading bacterium Rhodococcus ruber. Appl Microbiol Biot 2006; 72: 346-352.
  • [81] Ruiz C, Main T, Hilliard N, Howard GT. Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. Int Biodeter Biodegr 1999; 43: 43-47.
  • [82] Russel JR. Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 2011; 77: 6076-6084.
  • [83] Allen AB, Hilliard NP, Howard GT. Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. Int Biodeter Biodegr 1999; 43: 37-41.
  • [84] Howard GT, Blake RC. Growth of Pseudomonas fluorescens on a polyester-based polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeter Biodegr 1998; 42:7-12.
  • [85] Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 2005; 98: 1093-1100.
  • [86] Bhardwaj H, Gupta R, Tiwari A. Community of Microbial Enzymes Associated with Biodegradation of Plastics. J Polym Environ013; 21: 575-579.
  • [87] Jeon HJ, Kim MN. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation I Int Biodeter Biodegr 2015; 103: 141-146.
  • [88] Arkatkar A, Arutchelvi J, Uppara PV, Doble M, Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeter Biodegr 2009; 63:106-111.
  • [89] Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: A review. Environ Pollut 2013; 178: 483-492.
  • [90] Moore J.C. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ Res 2008; 108:131-139.
  • [91] Fossi MC, Panti C, Guerranti C, Coppola D, Giannetti M, Marsili L, Minutoli R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull 2012; 64: 2374-2379.
  • [92] Fox A, McGarity L, Bergen M. Global Scientific Study Finds Microscopic Plastic Fibers Contaminating Tap Water. Orb one world one story. Washington, USA, 2017. https://orbmedia.org/sites/default/files/Orb%20Media%20Microscopic%20Plastics%20Press%20Release%20SEP%205%202017.pdf
  • [93] Liu HF, Yang X.M, Liu G, Liang CT, Chen H, Ritsema CJ, Geissen VResponse of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017; 185: 907-917
  • [94] Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Microbial Symbioses with Microbes, Plants, and Animals. In: Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA, editors. Brock Biology of Microorganisms. Pearson, 2019. pp: 736.
  • [95] Yeates GW, Bongers T, De Goege R.G.M, Freckman DW, Georgieva SS. Feeding Habits in Soil Nematode Families and Genera--An Outline for Soil Ecologists. J Nematol 1993; 25: 315-331.
  • [96] Kirstein IV, Kirmizi S, Wichels A, Grain-Fernandez A, Erler R, Löder M, Gerdts G. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 2016; 120: 1-8.
  • [97] Viršek MK, Koren M.N L.Š. Microplastics as a vector for the transport of the bacterial fish pathogens species Aeromonas salmonicida. Mar Pollut Bull 2017; 125: 301-309
  • [98] Zhang C, Chen X, Wang J, Tan L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ Pollut 2017; 220: 1282-1288.
  • [99] Mao Y, Ai H, Chen Y, Zhang Z, Zeng P, Kang L, Li W, Gu W, He Q, Li H. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018; 208: 50-68.
  • [100] Galgani F, Fleet D, Van Franeker J, Katsanevakis S, Maes T, Mouat J, Oosterbaan L, Poitou I, Hanke G, Thompson R, Amato E, Birkun A, Janssen C. MARINE STRATEGY FRAMEWORK DIRECTIVE Task Group 10 Report Marine litter. European Union, 2010.
  • [101] Lyakurwa DJ. Uptake and Effects of Microplastic Particles in Selected Marine Microalgae Species; Oxyrrhis marina and Rhodomonas baltica. MSc, Norwegian University of Science and Technology, Trondheim, Norweg, 2017.
  • [102] Bergami E, Pugnalini S, Vannucini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I. Long-term toxicity of surface-charged polystyrene nanoplastics to marineplanktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 2017; 189:159-169.
  • [103] He D, Luo Y, Lu S, Liu M, Song Y, Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trac-trend Anal Chem 2018; 109: 163-172.
  • [104] Rodriguez- Seijo A, Lourenço J, Rocha-Santos T.A.P, Da Costa J, Duarte AC, Vala H, Preira R. Histopathological and molecular effects of microplastics in Eisenia Andrei Bouché. Environ Pollut 2017; 220: 495-503.
  • [105] Lwanga EH, Vega JM, Quej VK, Chi J.L.A, Van der Plog L, Besseling E, Koelmans AA, Geissen V. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep-UK 2017; 7.
  • [106] Lwanga EH, Gertsen H, Gooren H, Peters P, Salani T, Van der Ploeg M, Besseling E, Koelmans AA, Geissen V. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Sci Total Environ 2016; 50: 2685-2691.
  • [107] Lei L, Wu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 2018; 619-620: 1-8.
  • [108] Lei L, Liu M, Song Y, Shibo L, Hu J, Cao C, Xie B, Shi H, He D. Polystyrene (nano)microplastics cause size dependent neurotoxicity, oxidative damages and other adverse effects in Caenorhabditis elegans. Environ Sci-nano 2018; 5: 2009-2020.
  • [109] Lambert S, Sinclair C, Boxall A. Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In: Whitacre D. editors. Reviews of Environmental Contamination and Toxicology. Springer, Charm, 2014. 227. pp 1-53.
  • [110] Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 2007; 8: 14-24.
  • [111] Falcão G.A.M, Almeida TG, Bardi M.A.G, Carvalho LH, Canedo E. L. PBAT/organoclay composite flms—part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polym Bull 2019; 76: 291-301.
  • [112] Sánchez-Avila J, Bonet J, Velasco G, Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Sci Total Environ 2009; 407: 4157-4167.
  • [113] Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R. Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut R 2013; 20: 8057-8076.
  • [114] Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017; 182: 781-793.
  • [115] Shimo M, Yamamoto H, Ninomiya K, Kato N, Adachi O, Aeyama M, Sakazawa C. Pyrroloquinone Quinone as an Essential Growth Factor for a poly(vinyl alcohol)-degrading Symbiont, Pseudomonas sp VM15C. Agr Biol Chem Tokyo 19884; 48: 2873-2876.
There are 115 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Nahdhoit Ahamada Rachıd 0000-0001-5943-0273

Nihal Doğruöz Güngör 0000-0002-8098-039X

Publication Date July 30, 2020
Published in Issue Year 2020

Cite

APA Ahamada Rachıd, N., & Doğruöz Güngör, N. (2020). MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 9(2), 284-303. https://doi.org/10.18036/estubtdc.656857
AMA Ahamada Rachıd N, Doğruöz Güngör N. MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. July 2020;9(2):284-303. doi:10.18036/estubtdc.656857
Chicago Ahamada Rachıd, Nahdhoit, and Nihal Doğruöz Güngör. “MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9, no. 2 (July 2020): 284-303. https://doi.org/10.18036/estubtdc.656857.
EndNote Ahamada Rachıd N, Doğruöz Güngör N (July 1, 2020) MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9 2 284–303.
IEEE N. Ahamada Rachıd and N. Doğruöz Güngör, “MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 2, pp. 284–303, 2020, doi: 10.18036/estubtdc.656857.
ISNAD Ahamada Rachıd, Nahdhoit - Doğruöz Güngör, Nihal. “MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9/2 (July 2020), 284-303. https://doi.org/10.18036/estubtdc.656857.
JAMA Ahamada Rachıd N, Doğruöz Güngör N. MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9:284–303.
MLA Ahamada Rachıd, Nahdhoit and Nihal Doğruöz Güngör. “MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 9, no. 2, 2020, pp. 284-03, doi:10.18036/estubtdc.656857.
Vancouver Ahamada Rachıd N, Doğruöz Güngör N. MICROPLASTICS IN OUR PLANET: SOURCE, DISTRIBUTION, EFFECTS AND BIODEGRADATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9(2):284-303.