Review
BibTex RIS Cite

WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION

Year 2022, , 31 - 38, 19.01.2022
https://doi.org/10.18036/estubtdc.907029

Abstract

Plants to survive against to devastating impact of invasive biotic agents have to powerfully struggle in armed combat with microorganisms. Therefore they need to activate rapidly and efficiently pre-existing potential defensive chemicals. After upon perception initial external stimuli through cell membrane receptors and/or cytoplasmic resistance proteins before activity of related genes, some proteins participated in plant immune system undergo alterations referred as molecular modification. Phosphorylation is one of the first steps and most important modifications in signal transduction pathways of plant immunty. While transcription/translation of the gene dependening to molecular size, organism type, ribosome number is proceed in time unit from seconds to minutes, whereas phosphorylation is occurred in the time period expressed with milliseconds/seconds. Why does phosphorylation with compare to gene expression occur quickly in plant cells? In this commentary work inquired of this question, speedity of gene expression and phosphorylation processes on time profile is compared outlining with bionumbers.

References

  • [1] Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, et al. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr Rev Food Sci F, 2016;15:237-250.
  • [2] Pandeya SN, Dimmock JR. An Introduction to Drug Design. New Age International Publishers, New Delhi, 1997.
  • [3] Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol, J 2017;15:307-319.
  • [4] di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V, et al. Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics, 2013;12:3886-3897.
  • [5] Spoel SH. Orchestrating the proteome with post-translational modifications. J Exp Bot, 2018;69:4499-4503.
  • [6] Krause C, Richte, S, Knöll C, Jürgens G. Plant secretome: from cellular process to biological activity. Biochim Biophys Acta, 2013;183:2429-2441.
  • [7] Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014;65:385-413.
  • [8] Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol, 2017;586:97-113.
  • [9] Yalçın A. Posttranslasyonel Modifikasyon ve Protein Fonksiyonu. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 2012;31:29-38.
  • [10] Kadota Y, Macho AP, Zipfel C. Immunoprecipitation of plasma membrane receptor-like kinases for identification of phosphorylation sites and associated proteins. Methods Mol Biol, 2016;1363:133-144.
  • [11] Lemeer S, Heck AJ. The phosphoproteomics data explosion. Curr Opin Chem Biol, 2009;13:414-420.
  • [12] Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem,2010;285:9444-9451.
  • [13] Stram AR, Payne RM. Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci, 2016;73:4063-4073.
  • [14] Virág D, Dalmadi-Kiss B, Vékey K, Drahos L, Klebovich I, Antal I, Ludányi K. Current trends in the analysis of post-translational Modifications. Chromatographia, 2020;83:1-10.
  • [15] Martin BL. Regulation by Covalent Modification. In eLS, John Wiley and Sons Ltd (Ed.), Chichester, 2014.
  • [16] Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot, 2013;64:445-458.
  • [17] Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep, 2014;33:203-214.
  • [18] Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. Front Plant Sci, 2015;6:430.
  • [19] Krebs EG. The enzymology of control by phosphorylation. In:Boyer PD, Krebs EG, editors. The Enzymes. New York: Academic Press, 1986;17:pp.3-20.
  • [20] Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in-vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006;127:635-648.
  • [21] Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics, 2009;9:1451–1468.
  • [22] Ha JH, Loh SN.Protein conformational switches: from nature to design. Chemistry, 2012;18:7984-7999.
  • [23] Xu S, Xiao J, Yin F, Guo X, Xing L, Xu Y, Chong K. The Protein Modifications of O-GlcNAcylation and Phosphorylation Mediate Vernalization Response for Flowering in Winter Wheat. Plant Physiol, 2019;180:1436-1449.
  • [24] Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteom, 2007;6:1198-1214.
  • [25] Al-Momani S, Qi D, Ren Z, Jones AR. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. J Proteom, 2018;181:152-159.
  • [26] Weintz G, Olsen JV, Frühauf K, Niedzielska M, Amit I, Jantsch J,Mages J, Frech C, Dölken L, Mann M, et al. The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol, 2010;6:371.
  • [27] Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-Responsive Phosphoproteome. Mol Cell Proteom, 2019;18:1526-1542.
  • [28] Otto V, Schäfer E. Rapid Phytochrome-Controlled Protein Phosphorylation and Dephosphorylation in Avena sativa L. Plant Cell Physiol, 1988;29:1115-1121.
  • [29] Briskin DP, Leonard RT. Phosphorylation of the adenosine triphosphatase in a deoxycholate-treated plasma membrane fraction from corn roots. Plant Physiol, 1982;70:1459-1464.
  • [30] Briskin DP. Phosphorylation and dephosphorylation reactions of the red beet plasma membrane ATPase studied in the transient state. Plant Physiol, 1988;88:84-91.
  • [31] Rose ZB, Dube S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and biphosphoglycerate synthase. J Biol Chem, 1976;251:4817-4822.
  • [32] Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011;13:124-131.
  • [33] Park CJ, Caddell DF, Ronald PC. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front Plant Sci, 2012;3:177.
  • [34] Minkoff BB, Stecker KE, Sussman MR. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. Mol Cell Proteom, 2015;14:1169-1182.
  • [35] Yin J, Yi H, Chen X, Wang J. Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses. Int J Mol Sci, 2019;20:2807.
  • [36] Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci, 2006;4:15.
  • [37] Hargrove JL, Hulsey MG, Beale EG. The kinetics of mammalian gene expression. Bioessays, 1991;13:667-674.
  • [38] Lewin B. Genes VI. Oxford University Press; New Ed Edition, Oxford, 1997.
  • [39] Rawn JD. Biochemistry, Neil Patterson Publishers, Burlington, USA, 1989.
  • [40] Alberts B, Bray D, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 3rd ed. New York: Garland Science, 1994.

WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION

Year 2022, , 31 - 38, 19.01.2022
https://doi.org/10.18036/estubtdc.907029

Abstract

Plants to survive against to devastating impact of invasive biotic agents have to powerfully struggle in armed combat with microorganisms. Therefore they need to activate rapidly and efficiently pre-existing potential defensive chemicals. After upon perception initial external stimuli through cell membrane receptors and/or cytoplasmic resistance proteins before activity of related genes, some proteins participated in plant immune system undergo alterations referred as molecular modification. Phosphorylation is one of the first steps and most important modifications in signal transduction pathways of plant immunty. While transcription/translation of the gene dependening to molecular size, organism type, ribosome number is proceed in time unit from seconds to minutes, whereas phosphorylation is occurred in the time period expressed with milliseconds/seconds. Why does phosphorylation with compare to gene expression occur quickly in plant cells? In this commentary work inquired of this question, speedity of gene expression and phosphorylation processes on time profile is compared outlining with bionumbers.

References

  • [1] Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, et al. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr Rev Food Sci F, 2016;15:237-250.
  • [2] Pandeya SN, Dimmock JR. An Introduction to Drug Design. New Age International Publishers, New Delhi, 1997.
  • [3] Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol, J 2017;15:307-319.
  • [4] di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V, et al. Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics, 2013;12:3886-3897.
  • [5] Spoel SH. Orchestrating the proteome with post-translational modifications. J Exp Bot, 2018;69:4499-4503.
  • [6] Krause C, Richte, S, Knöll C, Jürgens G. Plant secretome: from cellular process to biological activity. Biochim Biophys Acta, 2013;183:2429-2441.
  • [7] Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014;65:385-413.
  • [8] Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol, 2017;586:97-113.
  • [9] Yalçın A. Posttranslasyonel Modifikasyon ve Protein Fonksiyonu. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 2012;31:29-38.
  • [10] Kadota Y, Macho AP, Zipfel C. Immunoprecipitation of plasma membrane receptor-like kinases for identification of phosphorylation sites and associated proteins. Methods Mol Biol, 2016;1363:133-144.
  • [11] Lemeer S, Heck AJ. The phosphoproteomics data explosion. Curr Opin Chem Biol, 2009;13:414-420.
  • [12] Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem,2010;285:9444-9451.
  • [13] Stram AR, Payne RM. Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci, 2016;73:4063-4073.
  • [14] Virág D, Dalmadi-Kiss B, Vékey K, Drahos L, Klebovich I, Antal I, Ludányi K. Current trends in the analysis of post-translational Modifications. Chromatographia, 2020;83:1-10.
  • [15] Martin BL. Regulation by Covalent Modification. In eLS, John Wiley and Sons Ltd (Ed.), Chichester, 2014.
  • [16] Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot, 2013;64:445-458.
  • [17] Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep, 2014;33:203-214.
  • [18] Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. Front Plant Sci, 2015;6:430.
  • [19] Krebs EG. The enzymology of control by phosphorylation. In:Boyer PD, Krebs EG, editors. The Enzymes. New York: Academic Press, 1986;17:pp.3-20.
  • [20] Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in-vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006;127:635-648.
  • [21] Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics, 2009;9:1451–1468.
  • [22] Ha JH, Loh SN.Protein conformational switches: from nature to design. Chemistry, 2012;18:7984-7999.
  • [23] Xu S, Xiao J, Yin F, Guo X, Xing L, Xu Y, Chong K. The Protein Modifications of O-GlcNAcylation and Phosphorylation Mediate Vernalization Response for Flowering in Winter Wheat. Plant Physiol, 2019;180:1436-1449.
  • [24] Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteom, 2007;6:1198-1214.
  • [25] Al-Momani S, Qi D, Ren Z, Jones AR. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. J Proteom, 2018;181:152-159.
  • [26] Weintz G, Olsen JV, Frühauf K, Niedzielska M, Amit I, Jantsch J,Mages J, Frech C, Dölken L, Mann M, et al. The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol, 2010;6:371.
  • [27] Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-Responsive Phosphoproteome. Mol Cell Proteom, 2019;18:1526-1542.
  • [28] Otto V, Schäfer E. Rapid Phytochrome-Controlled Protein Phosphorylation and Dephosphorylation in Avena sativa L. Plant Cell Physiol, 1988;29:1115-1121.
  • [29] Briskin DP, Leonard RT. Phosphorylation of the adenosine triphosphatase in a deoxycholate-treated plasma membrane fraction from corn roots. Plant Physiol, 1982;70:1459-1464.
  • [30] Briskin DP. Phosphorylation and dephosphorylation reactions of the red beet plasma membrane ATPase studied in the transient state. Plant Physiol, 1988;88:84-91.
  • [31] Rose ZB, Dube S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and biphosphoglycerate synthase. J Biol Chem, 1976;251:4817-4822.
  • [32] Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011;13:124-131.
  • [33] Park CJ, Caddell DF, Ronald PC. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front Plant Sci, 2012;3:177.
  • [34] Minkoff BB, Stecker KE, Sussman MR. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. Mol Cell Proteom, 2015;14:1169-1182.
  • [35] Yin J, Yi H, Chen X, Wang J. Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses. Int J Mol Sci, 2019;20:2807.
  • [36] Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci, 2006;4:15.
  • [37] Hargrove JL, Hulsey MG, Beale EG. The kinetics of mammalian gene expression. Bioessays, 1991;13:667-674.
  • [38] Lewin B. Genes VI. Oxford University Press; New Ed Edition, Oxford, 1997.
  • [39] Rawn JD. Biochemistry, Neil Patterson Publishers, Burlington, USA, 1989.
  • [40] Alberts B, Bray D, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 3rd ed. New York: Garland Science, 1994.
There are 40 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Berna Baş 0000-0003-2455-2849

Publication Date January 19, 2022
Published in Issue Year 2022

Cite

APA Baş, B. (2022). WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 11(1), 31-38. https://doi.org/10.18036/estubtdc.907029
AMA Baş B. WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2022;11(1):31-38. doi:10.18036/estubtdc.907029
Chicago Baş, Berna. “WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11, no. 1 (January 2022): 31-38. https://doi.org/10.18036/estubtdc.907029.
EndNote Baş B (January 1, 2022) WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 1 31–38.
IEEE B. Baş, “WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 11, no. 1, pp. 31–38, 2022, doi: 10.18036/estubtdc.907029.
ISNAD Baş, Berna. “WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11/1 (January 2022), 31-38. https://doi.org/10.18036/estubtdc.907029.
JAMA Baş B. WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2022;11:31–38.
MLA Baş, Berna. “WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 11, no. 1, 2022, pp. 31-38, doi:10.18036/estubtdc.907029.
Vancouver Baş B. WHAT TELL US THIS BIONUMBERS IN PLANT DEFENSE PROTEIN PHOSPHORYLATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2022;11(1):31-8.