Araştırma Makalesi
BibTex RIS Kaynak Göster

A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION

Yıl 2022, Cilt: 11 Sayı: 1, 11 - 21, 19.01.2022
https://doi.org/10.18036/estubtdc.695517

Öz

In the present study, a new composite catalyst which highly active under the visible light was synthesized by immobilizing onto bentonite surface using ZnO materials (ZnO/Bent). For this, a simple in situ participant technique was used. The samples were characterized using SEM, XRD, BET techniques. SEM images possess that ZnO particles have nearly a spherical structure. Bentonite clay was used to increase the surface area of the samples. The obtained BET surface area of the samples shows that the ZnO/Bent catalyst was lower than that of pure Bentonite. The aim of this study was to evaluate the effectiveness of photocatalytic disinfection with ZnO-Bent composite against E. coli and P. aeruginosa under visible light irradiation. The obtained results show that when E. coli strain was subjected to ZnO-Bent mediated photocatalytic disinfection under solar irradiation, more than 98 % disinfection of the targeted E. coli was achieved within 2 hours and also 100% of P. aeruginosa colonies were inactivated within 4 hours under solar irradiation. A Possible degradation mechanism for ZnO/Bent composite was proposed in this study.

Destekleyen Kurum

Muğla Sıtkı Koçman Üniversitesi

Proje Numarası

15139

Kaynakça

  • [1] Zhang G, Tan Y, Sun Z, Zheng S. Synthesis of BiOCl/TiO2 heterostructure composites and their enhanced photocatalytic activity. J Environ Chem Eng, 2017; 5: 1196-1204.
  • [2] Lima AAM, Moore SR, Barboza MS, et al. Persistent Diarrhea Signals a Critical Period of Increased Diarrhea Burdens and Nutritional Shortfalls: A Prospective Cohort Study among Children in Northeastern Brazil. The Journal of Infectious Diseases, 2000; 181(5): 1643-1651.
  • [3] Singh P, Bengtsson L. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. Journal of Hydrology, 2005; 300:140-154.
  • [4] Shannon M, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM, Science and technology for water purification in the coming decades. Nature, 2008; 452: 301-310.
  • [5] Wang W, Huang G, Jimmy CY, Wong PK. Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. Journal of Environmental Sciences, 2015; 34: 232-247.
  • [6] Gamage J, Zhang Z. Applications of photocatalytic disinfection. International Journal of Photoenergy, 2010; 1-10.
  • [7] Song L, Pang Y, Zheng Y, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method. Journal of Alloys and Compounds, 2017; 710, 375-382.
  • [8] Zhang L, Wang W, Zhou L, Shang M & Sun S, Fe3O4 coupled BiOCI: a highly efficient magnetic photocaalyst. Appl Catal B, 2009; 90 (3-4): 458- 462.
  • [9] Zhang KL, Liu CM, Huang FQ et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ, 2006; 68 (3-4): 125–129.
  • [10] Liu Y, Yao W, Liu D, et al. Enhancement of visible light mineralization ability and photocatalytic of BipO4 /BiOI. Appl. Catal. B: Environ 2015; 163: 547-553.
  • [11] Ma W, Chen L, Zhu Y, et al. Facile synthesis of the magnetic BiOCI/ZnFe2O4heterostructures with enhanced photocatalytic activity under visible light irradiation. Colloids And Surfaces A: Physicochem And Eng. Aspects, 2016; 508: 135-141.
  • [12] Priya B, Shandilya P, Raizada P, et al. Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. J. Mol.Catal. A: Chemical, 2016; 423: 400-413.
  • [13] Zhang L, Zhang J, Zhang W, et al. Photocatalytic activity of attapulgite-BiOCI-TiO2 toward degradation of methyl orange under UV and visible light irradiation. Mater Res Bull, 2015; 66: 109-114.
  • [14] Hartman D, Perfecting Your Spread Plate Technique. J Microbiol Biol Educ. 2011; 12(2): 204-205.
  • [15] Saelim NO, Magaraphan R, Sreethawong T. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Convers Manage, 2011; 52(8–9): 2815–2818.
  • [16] Sun D, Mao J, Cheng L, Yang X, Li H, Zhang L, Zang W, Zang Q, Li P, Magnetic g-C3N4/NiFe2O4 composite with enhanced activity on photocatalytic disinfection of Aspergillus flavus. Chemical Engineering Journal, 2021; 418: 129417.
  • [17] Najma B, Kasi AK, Kasi JK, Akbar A, Bokhari SMA, Stroe IR, ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay. Applied Surface Science, 2018; 448:104-114.
  • [18] Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V, Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Materials Research Bulletin, 2011; 46(10): 1586-1592.
  • [19] Cao M, Wang F, Zhu J, et al. Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties. Materials Letters, 2017; 192, 1-4.
  • [20] Soltani, RDC, Jorfi S, Safari M, Rajaei MS, Enhanced sonocatalysis of textile wastewater using bentonite supported ZnO nanoparticles: Response surface methodological approach. Journal of Environmental Management, 2016; 179: 47-57.
  • [21] Baikousi M, Bourlinos AB, Douvalis A, et al. Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in the removal of hexavalent chromium ions from aqueous solutions. Langmuir, 2012; 28(8): 3918-3930.
  • [22] Vaizoğullar Aİ, TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chem Eng Commun, 2017; 204: 689-697.
  • [23] Motshekga SC, Ray SS, Onyango MS. Momba MN, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. Journal of Hazardous Materials, 2013; 262: 439-446.
  • [24] Paspaltsis I, Kotta K, Lagoudaki R, et al. Titanium dioxide photocatalytic inactivation of prions. Journal of General Virology, 2006; 87(10):3125–3130.
  • [25] Foster HA, Ditta IB, Varghese S. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology Biotechnology, 2011; 90:1847–1868
  • [26] Mahon MJ, Pillai SC, Kelly JM, Gill LW. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium-based complexes in a continuous flow system. Journal of Photochemistry & Photobiology, B: Biology, 2017; 170:79-90.
  • [27] Oh W-D, Lua S-K, Donga Z, Lim T-T. Rational design of hierarchically structured CuBi2O4 composites by deliberate manipulation of the nucleation and growth kinetics of CuBi2O4 for environmental applications. Nanoscale 2016; 8:2046-2054.

A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION

Yıl 2022, Cilt: 11 Sayı: 1, 11 - 21, 19.01.2022
https://doi.org/10.18036/estubtdc.695517

Öz

Proje Numarası

15139

Kaynakça

  • [1] Zhang G, Tan Y, Sun Z, Zheng S. Synthesis of BiOCl/TiO2 heterostructure composites and their enhanced photocatalytic activity. J Environ Chem Eng, 2017; 5: 1196-1204.
  • [2] Lima AAM, Moore SR, Barboza MS, et al. Persistent Diarrhea Signals a Critical Period of Increased Diarrhea Burdens and Nutritional Shortfalls: A Prospective Cohort Study among Children in Northeastern Brazil. The Journal of Infectious Diseases, 2000; 181(5): 1643-1651.
  • [3] Singh P, Bengtsson L. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. Journal of Hydrology, 2005; 300:140-154.
  • [4] Shannon M, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM, Science and technology for water purification in the coming decades. Nature, 2008; 452: 301-310.
  • [5] Wang W, Huang G, Jimmy CY, Wong PK. Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. Journal of Environmental Sciences, 2015; 34: 232-247.
  • [6] Gamage J, Zhang Z. Applications of photocatalytic disinfection. International Journal of Photoenergy, 2010; 1-10.
  • [7] Song L, Pang Y, Zheng Y, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method. Journal of Alloys and Compounds, 2017; 710, 375-382.
  • [8] Zhang L, Wang W, Zhou L, Shang M & Sun S, Fe3O4 coupled BiOCI: a highly efficient magnetic photocaalyst. Appl Catal B, 2009; 90 (3-4): 458- 462.
  • [9] Zhang KL, Liu CM, Huang FQ et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ, 2006; 68 (3-4): 125–129.
  • [10] Liu Y, Yao W, Liu D, et al. Enhancement of visible light mineralization ability and photocatalytic of BipO4 /BiOI. Appl. Catal. B: Environ 2015; 163: 547-553.
  • [11] Ma W, Chen L, Zhu Y, et al. Facile synthesis of the magnetic BiOCI/ZnFe2O4heterostructures with enhanced photocatalytic activity under visible light irradiation. Colloids And Surfaces A: Physicochem And Eng. Aspects, 2016; 508: 135-141.
  • [12] Priya B, Shandilya P, Raizada P, et al. Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. J. Mol.Catal. A: Chemical, 2016; 423: 400-413.
  • [13] Zhang L, Zhang J, Zhang W, et al. Photocatalytic activity of attapulgite-BiOCI-TiO2 toward degradation of methyl orange under UV and visible light irradiation. Mater Res Bull, 2015; 66: 109-114.
  • [14] Hartman D, Perfecting Your Spread Plate Technique. J Microbiol Biol Educ. 2011; 12(2): 204-205.
  • [15] Saelim NO, Magaraphan R, Sreethawong T. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Convers Manage, 2011; 52(8–9): 2815–2818.
  • [16] Sun D, Mao J, Cheng L, Yang X, Li H, Zhang L, Zang W, Zang Q, Li P, Magnetic g-C3N4/NiFe2O4 composite with enhanced activity on photocatalytic disinfection of Aspergillus flavus. Chemical Engineering Journal, 2021; 418: 129417.
  • [17] Najma B, Kasi AK, Kasi JK, Akbar A, Bokhari SMA, Stroe IR, ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay. Applied Surface Science, 2018; 448:104-114.
  • [18] Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V, Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Materials Research Bulletin, 2011; 46(10): 1586-1592.
  • [19] Cao M, Wang F, Zhu J, et al. Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties. Materials Letters, 2017; 192, 1-4.
  • [20] Soltani, RDC, Jorfi S, Safari M, Rajaei MS, Enhanced sonocatalysis of textile wastewater using bentonite supported ZnO nanoparticles: Response surface methodological approach. Journal of Environmental Management, 2016; 179: 47-57.
  • [21] Baikousi M, Bourlinos AB, Douvalis A, et al. Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in the removal of hexavalent chromium ions from aqueous solutions. Langmuir, 2012; 28(8): 3918-3930.
  • [22] Vaizoğullar Aİ, TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chem Eng Commun, 2017; 204: 689-697.
  • [23] Motshekga SC, Ray SS, Onyango MS. Momba MN, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. Journal of Hazardous Materials, 2013; 262: 439-446.
  • [24] Paspaltsis I, Kotta K, Lagoudaki R, et al. Titanium dioxide photocatalytic inactivation of prions. Journal of General Virology, 2006; 87(10):3125–3130.
  • [25] Foster HA, Ditta IB, Varghese S. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology Biotechnology, 2011; 90:1847–1868
  • [26] Mahon MJ, Pillai SC, Kelly JM, Gill LW. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium-based complexes in a continuous flow system. Journal of Photochemistry & Photobiology, B: Biology, 2017; 170:79-90.
  • [27] Oh W-D, Lua S-K, Donga Z, Lim T-T. Rational design of hierarchically structured CuBi2O4 composites by deliberate manipulation of the nucleation and growth kinetics of CuBi2O4 for environmental applications. Nanoscale 2016; 8:2046-2054.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Öge Başoğlan Artagan 0000-0001-9389-4450

Ali İmran Vaizoğullar 0000-0003-4369-405X

Proje Numarası 15139
Yayımlanma Tarihi 19 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 1

Kaynak Göster

APA Başoğlan Artagan, Ö., & Vaizoğullar, A. İ. (2022). A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 11(1), 11-21. https://doi.org/10.18036/estubtdc.695517
AMA Başoğlan Artagan Ö, Vaizoğullar Aİ. A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION. Estuscience - Life. Ocak 2022;11(1):11-21. doi:10.18036/estubtdc.695517
Chicago Başoğlan Artagan, Öge, ve Ali İmran Vaizoğullar. “A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia Coli AND Pseudomonas Aeruginosa UNDER VISIBLE LIGHT IRRADIATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11, sy. 1 (Ocak 2022): 11-21. https://doi.org/10.18036/estubtdc.695517.
EndNote Başoğlan Artagan Ö, Vaizoğullar Aİ (01 Ocak 2022) A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 1 11–21.
IEEE Ö. Başoğlan Artagan ve A. İ. Vaizoğullar, “A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION”, Estuscience - Life, c. 11, sy. 1, ss. 11–21, 2022, doi: 10.18036/estubtdc.695517.
ISNAD Başoğlan Artagan, Öge - Vaizoğullar, Ali İmran. “A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia Coli AND Pseudomonas Aeruginosa UNDER VISIBLE LIGHT IRRADIATION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11/1 (Ocak 2022), 11-21. https://doi.org/10.18036/estubtdc.695517.
JAMA Başoğlan Artagan Ö, Vaizoğullar Aİ. A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION. Estuscience - Life. 2022;11:11–21.
MLA Başoğlan Artagan, Öge ve Ali İmran Vaizoğullar. “A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia Coli AND Pseudomonas Aeruginosa UNDER VISIBLE LIGHT IRRADIATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 11, sy. 1, 2022, ss. 11-21, doi:10.18036/estubtdc.695517.
Vancouver Başoğlan Artagan Ö, Vaizoğullar Aİ. A NOVEL AND EFFICIENT PHOTOCATALYSIS (ZnO/BENTONITE) FOR DISINFECTION OF Escherichia coli AND Pseudomonas aeruginosa UNDER VISIBLE LIGHT IRRADIATION. Estuscience - Life. 2022;11(1):11-2.