Araştırma Makalesi
BibTex RIS Kaynak Göster

Portland Çimentosunun Eğilme Dayanımına Yüksek Fırın Cürufu Etkisinin Bulanık Mantık ve ANFIS ile Tahmini

Yıl 2023, Cilt: 4 Sayı: 1, 17 - 24, 31.01.2023
https://doi.org/10.53608/estudambilisim.1227733

Öz

Bu çalışmada, yüksek fırın cürufu (YFC) ikameli çimento harç numunelerinin eğilme dayanımlarının tahmini için bulanık mantık ve uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS) modelleri geliştirilmiştir. Bu amaçla, Portland çimentosuna %0, 5, 10, 15 ve 20 oranlarıyla yüksek fırın cürufu ikame edilerek toplam 5 çimento üretilmiştir. Bu çimentolar ile üretilen harçların eğilme dayanımları standart çimento testleriyle 2, 7, 28 ve 90. hidratasyon günlerinde belirlenmiştir. Bunun yanı sıra YFC ikameli harçların eğilme dayanım sonuçlarını tahmin etmek için hem bulanık mantık hem de ANFIS için üçgen üyelik fonksiyonu kullanılarak tahmin modelleri oluşturulmuştur. Daha sonra, bu tahmin sonuçları deneysel sonuçlar ile karşılaştırılmıştır. Elde edilen verilere göre, çimento harç numunelerinin eğilme dayanımlarının bulanık mantık ve ANFIS için korelasyon katsayıları sırasıyla 0.76 ve 0.90 tespit edilmiştir. Tespit edilen veriler, deney sonuçlarıyla özellikle ANFIS modelindeki sonuçlar arasında iyi uyum sağlandığı ve çimento teknolojisindeki eğilme dayanımlarının tahmininde başarıyla uygulanabilirliğini göstermiştir.

Teşekkür

Yazarlar, Bolu Çimento Fabrikası Yetkililerine ve Laboratuvar Çalışanlarına standart çimento deneylerdeki katkılarından dolayı çok teşekkür ederler.

Kaynakça

  • Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453.
  • Sandhu, R. K., & Siddique, R. (2021). Properties of sustainable self-compacting concrete made with rice husk ash. European Journal of Environmental and Civil Engineering, 1-25.
  • Kocak, Y. (2020). Effects of metakaolin on the hydration development of Portland–composite cement. Journal of Building Engineering, 31, 101419.
  • Joshaghani, A. (2017). The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete. Construction and Building Materials, 150, 583-590.
  • Kurtay, M., Gerengi, H., & Kocak, Y., Chidiebere, M. A., & Yildiz, M. (2020). The potency of zeolite and diatomite on the corrosive destruction of reinforcing steel in 1 M HNO3 environment. Construction and Building Materials, 236, 117572.
  • Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528.
  • Lee, Y. J., Kim, H. G., & Kim, K. H. (2021). Effect of Ground Granulated Blast Furnace Slag Replacement Ratio on Structural Performance of Precast Concrete Beams. Materials, 14(23), 7159.
  • Aliabdo, A. A., Abd Elmoaty, M., & Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339-355.
  • Erdoğdu, Ş., & Kurbetci, Ş. (2003). Betonun Performansına Sağladıkları Etkinlik Acısından Kimyasal ve Mineral Katkı Maddeleri. Turkiye Muhendislik Haberleri, 426(4), 115-120.
  • Uysal, F. F., & Bahar, S. (2018). Cüruf Çeşitleri Ve Kullanım Alanları. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 19(1), 37-52.
  • Tokyay, M., Erdoğdu, K. (1997). Cüruflar ve cüruflu çimentolar. TÇMB/AR-GE/Y97.2, Ankara.
  • Yalçın, H., Gürü, M. (2006). Çimento ve Beton. Palme Yayıncılık, Ankara.
  • Abdelli, K., Tahlaiti, M., Belarbi, R., & Oudjit, M. N. (2017). Influence of the pozzolanic reactivity of the Blast Furnace Slag (BFS) and metakaolin on mortars. Energy Procedia, 139, 224-229.
  • López, M. M., Pineda, Y., & Gutiérrez, O. (2015). Evaluation of durability and mechanical properties of the cement mortar added with slag blast furnace. Procedia Materials Science, 9, 367-376.
  • Zhu, J., Zhong, Q., Chen, G., & Li, D. (2012). Effect of particlesize of blast furnace slag on properties of portland cement. Procedia Engineering, 27, 231-236.
  • Emiroğlu, M., Koçak, Y., & Subaşı, S. (2011). Yüksek Fırın Cürufunun Betonun Fiziksel ve Mekanik Özelliklerine Etkisi. In 6th International Advanced Technologies Symposium (IATS’11) 1, 113-117.
  • Samad, S., & Shah, A. (2017). Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review. International journal of Sustainable built environment, 6(2), 663-674.
  • Richardson, D. N. (2006). Strength and durability characteristics of a 70% ground granulated blast furnace slag (GGBFS) concrete mix. Technical Report, Report Number: RI99-035/RI99-035B, Missouri Department of Transportation (MoDOT).
  • Sanjuán, M. Á., Estévez, E., Argiz, C., & del Barrio, D. (2018). Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites, 90, 257-265.
  • Ekinci, C. E. (1993). Elazığ Ferrokrom Fabrikası Cürufunun Çimentoda Puzolanik Katkı Maddesi Olarak Kullanılabilirliğinin Araştırılması. Endüstriyel Atıkların İnşaat Sektöründe Kullanılması Sempozyumu, Ankara İMO, 243-253.
  • de Oliveira Dieguez, A. C., Oliveira, S. L. N., Araújo, G. S., & de Sousa Galdino, A. G. (2019). Comparison of Kambara reactor slag with blast furnace slag for Portland cement industry applications. Journal of Materials Research and Technology, 8(3), 2786-2795.
  • Sadawy, M. M., & Nooman, M. T. (2020). Influence of nano-blast furnace slag on microstructure, mechanical and corrosion characteristics of concrete. Materials Chemistry and Physics, 251, 123092.
  • Hosan, A., & Shaikh, F. U. A. (2021). Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3. Journal of Materials Research and Technology, 10, 1310-1322.
  • Amin, M. S., El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., & Ramadan, M. (2015). Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume. HBRC journal, 11(3), 321-327.
  • Wang, X. Y., & Lee, H. S. (2019). Effect of global warming on the proportional design of low CO2 slag-blended concrete. Construction and Building Materials, 225, 1140-1151.
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2017). Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models. Computers and Concrete, 19(3), 275-282.
  • Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G., & Xue, J. (2019). Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Construction and Building Materials, 211, 479-491.
  • Adesanya, E., Aladejare, A., Adediran, A., Lawal, A., & Illikainen, M. (2021). Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites, 124, 104265.
  • Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532.
  • Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, A. Z., Mahmud, M. P., & Nawaz, A. (2021). Using multivariate regression and ANN models to predict properties of concrete cured under hot weather. Sustainability, 13(18), 10164.
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, 21(1), 21-30.
  • Guler, I., Tunca, A., & Gulbandilar, E. (2008). Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Systems with Applications 34(2): 1312-1317.
  • Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • Tanyildızi, H. (2009). Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete. Advances in Engineering Software 40, 161-169.
  • Demir, F. (2005). A new way of prediction elastic modulus of normal and high strength concrete—fuzzy logic. Cement and Concrete Research, 35(8), 1531-1538.
  • Güler, K., Demir, F., & Pakdamar, F. (2012). Stress–strain modelling of high strength concrete by fuzzy logic approach. Construction and Building Materials, 37, 680-684.
  • Kocak, Y., & Gulbandilar, E. (2016). MgSO4 Etkisindeki Betonların Basınç Dayanımının ANFIS ile Tahmini. 8. Uluslararası Kırmataş Sempozyumu, Kütahya, Türkiye, 251-262.
  • Mansouri, I., & Kisi, O. (2015). Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Composites Part B: Engineering, 70, 247-255.
  • Güvenç, U., & Koçak, B. (2022). Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 3(1), 18-25.
  • TS EN 196-1. Çimento deney metodları- Bölüm 1: Dayanım tayini,. Türk Standartları, Ankara, 2016.
  • Hsu, Y. L., Lee, C. H., & Kreng, V. B. (2010). The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications, 37(1), 419-425.
  • Ajayi, A. O., Aderounmu, G. A., Soriyan, H. A., & David, A. (2010). An intelligent quality of service brokering model for e-commerce. Expert Systems with Applications, 37(1), 816-823.

Prediction the Effects of Blast Furnace Slag on the Flexural Strengths of Portland Cement with Fuzzy Logic and ANFIS

Yıl 2023, Cilt: 4 Sayı: 1, 17 - 24, 31.01.2023
https://doi.org/10.53608/estudambilisim.1227733

Öz

In this study, fuzzy logic and adaptive network-based fuzzy inference system (ANFIS) models were developed for the estimation of flexural strengths of blast furnace slag (BFS) substituted cement mortars. For this purpose, a total of 5 cements were produced by substituting 0, 5, 10, 15 and 20 wt% BFS into Portland cement. The flexural strengths of the mortars produced with these cements were determined by standard cement tests on the 2nd, 7th, 28th and 90th hydration days. In addition, to predict the flexural strength of BFS-substituted cement mortars, estimation models were created using triangular membership function for both fuzzy logic and ANFIS. Then, these prediction results have been compared with the experimental results. According to the data obtained, the correlation coefficients of flexural strength of cement mortars for fuzzy logic and ANFIS were determined as 0.76 and 0.90, respectively. The obtained results showed that there are a good agreement between the test results and the results especially in the ANFIS model, and it can be successfully applied in the prediction of flexural strengths in cement technology.

Kaynakça

  • Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453.
  • Sandhu, R. K., & Siddique, R. (2021). Properties of sustainable self-compacting concrete made with rice husk ash. European Journal of Environmental and Civil Engineering, 1-25.
  • Kocak, Y. (2020). Effects of metakaolin on the hydration development of Portland–composite cement. Journal of Building Engineering, 31, 101419.
  • Joshaghani, A. (2017). The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete. Construction and Building Materials, 150, 583-590.
  • Kurtay, M., Gerengi, H., & Kocak, Y., Chidiebere, M. A., & Yildiz, M. (2020). The potency of zeolite and diatomite on the corrosive destruction of reinforcing steel in 1 M HNO3 environment. Construction and Building Materials, 236, 117572.
  • Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528.
  • Lee, Y. J., Kim, H. G., & Kim, K. H. (2021). Effect of Ground Granulated Blast Furnace Slag Replacement Ratio on Structural Performance of Precast Concrete Beams. Materials, 14(23), 7159.
  • Aliabdo, A. A., Abd Elmoaty, M., & Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339-355.
  • Erdoğdu, Ş., & Kurbetci, Ş. (2003). Betonun Performansına Sağladıkları Etkinlik Acısından Kimyasal ve Mineral Katkı Maddeleri. Turkiye Muhendislik Haberleri, 426(4), 115-120.
  • Uysal, F. F., & Bahar, S. (2018). Cüruf Çeşitleri Ve Kullanım Alanları. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 19(1), 37-52.
  • Tokyay, M., Erdoğdu, K. (1997). Cüruflar ve cüruflu çimentolar. TÇMB/AR-GE/Y97.2, Ankara.
  • Yalçın, H., Gürü, M. (2006). Çimento ve Beton. Palme Yayıncılık, Ankara.
  • Abdelli, K., Tahlaiti, M., Belarbi, R., & Oudjit, M. N. (2017). Influence of the pozzolanic reactivity of the Blast Furnace Slag (BFS) and metakaolin on mortars. Energy Procedia, 139, 224-229.
  • López, M. M., Pineda, Y., & Gutiérrez, O. (2015). Evaluation of durability and mechanical properties of the cement mortar added with slag blast furnace. Procedia Materials Science, 9, 367-376.
  • Zhu, J., Zhong, Q., Chen, G., & Li, D. (2012). Effect of particlesize of blast furnace slag on properties of portland cement. Procedia Engineering, 27, 231-236.
  • Emiroğlu, M., Koçak, Y., & Subaşı, S. (2011). Yüksek Fırın Cürufunun Betonun Fiziksel ve Mekanik Özelliklerine Etkisi. In 6th International Advanced Technologies Symposium (IATS’11) 1, 113-117.
  • Samad, S., & Shah, A. (2017). Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review. International journal of Sustainable built environment, 6(2), 663-674.
  • Richardson, D. N. (2006). Strength and durability characteristics of a 70% ground granulated blast furnace slag (GGBFS) concrete mix. Technical Report, Report Number: RI99-035/RI99-035B, Missouri Department of Transportation (MoDOT).
  • Sanjuán, M. Á., Estévez, E., Argiz, C., & del Barrio, D. (2018). Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites, 90, 257-265.
  • Ekinci, C. E. (1993). Elazığ Ferrokrom Fabrikası Cürufunun Çimentoda Puzolanik Katkı Maddesi Olarak Kullanılabilirliğinin Araştırılması. Endüstriyel Atıkların İnşaat Sektöründe Kullanılması Sempozyumu, Ankara İMO, 243-253.
  • de Oliveira Dieguez, A. C., Oliveira, S. L. N., Araújo, G. S., & de Sousa Galdino, A. G. (2019). Comparison of Kambara reactor slag with blast furnace slag for Portland cement industry applications. Journal of Materials Research and Technology, 8(3), 2786-2795.
  • Sadawy, M. M., & Nooman, M. T. (2020). Influence of nano-blast furnace slag on microstructure, mechanical and corrosion characteristics of concrete. Materials Chemistry and Physics, 251, 123092.
  • Hosan, A., & Shaikh, F. U. A. (2021). Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3. Journal of Materials Research and Technology, 10, 1310-1322.
  • Amin, M. S., El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., & Ramadan, M. (2015). Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume. HBRC journal, 11(3), 321-327.
  • Wang, X. Y., & Lee, H. S. (2019). Effect of global warming on the proportional design of low CO2 slag-blended concrete. Construction and Building Materials, 225, 1140-1151.
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2017). Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models. Computers and Concrete, 19(3), 275-282.
  • Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G., & Xue, J. (2019). Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Construction and Building Materials, 211, 479-491.
  • Adesanya, E., Aladejare, A., Adediran, A., Lawal, A., & Illikainen, M. (2021). Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites, 124, 104265.
  • Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532.
  • Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, A. Z., Mahmud, M. P., & Nawaz, A. (2021). Using multivariate regression and ANN models to predict properties of concrete cured under hot weather. Sustainability, 13(18), 10164.
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, 21(1), 21-30.
  • Guler, I., Tunca, A., & Gulbandilar, E. (2008). Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Systems with Applications 34(2): 1312-1317.
  • Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • Tanyildızi, H. (2009). Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete. Advances in Engineering Software 40, 161-169.
  • Demir, F. (2005). A new way of prediction elastic modulus of normal and high strength concrete—fuzzy logic. Cement and Concrete Research, 35(8), 1531-1538.
  • Güler, K., Demir, F., & Pakdamar, F. (2012). Stress–strain modelling of high strength concrete by fuzzy logic approach. Construction and Building Materials, 37, 680-684.
  • Kocak, Y., & Gulbandilar, E. (2016). MgSO4 Etkisindeki Betonların Basınç Dayanımının ANFIS ile Tahmini. 8. Uluslararası Kırmataş Sempozyumu, Kütahya, Türkiye, 251-262.
  • Mansouri, I., & Kisi, O. (2015). Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Composites Part B: Engineering, 70, 247-255.
  • Güvenç, U., & Koçak, B. (2022). Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 3(1), 18-25.
  • TS EN 196-1. Çimento deney metodları- Bölüm 1: Dayanım tayini,. Türk Standartları, Ankara, 2016.
  • Hsu, Y. L., Lee, C. H., & Kreng, V. B. (2010). The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications, 37(1), 419-425.
  • Ajayi, A. O., Aderounmu, G. A., Soriyan, H. A., & David, A. (2010). An intelligent quality of service brokering model for e-commerce. Expert Systems with Applications, 37(1), 816-823.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri
Yazarlar

Burak Koçak 0000-0002-8640-1758

Yusuf İslam Şahin 0000-0003-2378-2546

Yılmaz Koçak 0000-0002-5281-5450

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 1 Ocak 2023
Kabul Tarihi 17 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 1

Kaynak Göster

IEEE B. Koçak, Y. İ. Şahin, ve Y. Koçak, “Portland Çimentosunun Eğilme Dayanımına Yüksek Fırın Cürufu Etkisinin Bulanık Mantık ve ANFIS ile Tahmini”, ESTUDAM Bilişim, c. 4, sy. 1, ss. 17–24, 2023, doi: 10.53608/estudambilisim.1227733.

Dergimiz Index Copernicus, ASOS Indeks, Google Scholar ve ROAD indeks tarafından indekslenmektedir.