Research Article
BibTex RIS Cite

Domates Bitkilerinin Erken Yaprak Leke Hastalığının Nedeni Olan Alternaria solani'ye Karşı Esansiyel Yağların Antifungal Etkinliğini Araştırılması

Year 2024, Volume: 7 Issue: 2, 12 - 23
https://doi.org/10.55257/ethabd.1512589

Abstract

Alternaria solani, domates tarlalarında yaygın olarak görülen erken solgunluk hastalığının sorumlusu olan önemli bir nekrotrofik fungus türüdür. Bu araştırmada, Satureja hortensis, Thymbra spicata, Thymus sipyleus, Origanum majorana, O. syriacium, O. onites, O. vulgar, Artemisia absinthium, A. santonicum ve A. spicigera bitkilerinden elde edilen uçucu yağların Alternaria solani'ye karşı antifungal aktivitesi test edilmiştir. Çalışma iki farklı şekilde invitro ve in vivo olarak gerçekleştirilmiştir. İn vitro çalışmalarında uçucu yağlarla karıştırılmış besi yerleri üzerinde yapılmıştır ve yağların farklı konsantrasyonu petri kaplarında büyütülmüş fungusların üzerine bakılmıştır. İn vivo çalışmalarda ise sağlıklı domates meyveleri üzerine hastalık bulaştırarak uçucu yağların hastalık lezyonların gelişmesini etkileri değerlendirilmiştir. Çalışmada kullanılan konsantrasyonlar in vitro koşullarda 140, 280, 560 ve 1000 µl/L, in vivo koşullarda ise 2.5, 5, 10 ve 20 µl/meyve olarak belirlenmiştir. İn vitro deneyler arasında Thymus sipyleus ve O. onites'ten elde edilen uçucu yağlar, tüm konsantrasyonlarda fungal patojenin tamamen büyümesini
engelleyen en belirgin antifungal etkinliği sergilemiştir. Artemisia spicigera ve A. santonicum'un uçucu yağları diğer yağlara göre daha düşük etkinlik göstermiştir. Öte yandan, in vivo koşullarda O. majorana ve A. absinthium'dan elde edilen uçucu yağlar, meyve üzerinde hastalık lezyonlarının gelişimini en çok engelleyenler olmuş ve 2.5 µl/meyve konsantrasyonunda sırasıyla %84 ve %64 inhibitasyon oranları neden olmuştur. Buna karşılık, Artemisia spicigera ve A. santonicum'un uçucu yağları hastalığın gelişimine en az etki etmiş ve 20 µl/meyve dozunda bile meyvelerde hastalık lezyonları görülmüştür. Uçucu yağların çoğu bir dereceye kadar antifungal etkiye sahip olsa da, gelecekle ilgili araştırmaların güvenilirliğini ve tutarlılığını artırmak için hem in vitro hem de in vivo denemelere daha fazla çaba harcanması gerekmektedir.

References

  • Abeysinghe, S., 2009. Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on biological control of Rhizoctonia solani on Solanum melongena and Cap-sicum annum. Archives ofPhytopathology and Plant Protection 42 (3), 221-2.
  • Agrios, G.N., 2005. Plant Pathology. 5th. New York: Elsevier.
  • Aktepe, B.P., Mertoğlu, K., Evrenosoğlu, Y., Aysan, Y., 2019. Farklı bitki uçucu yağların Erwinia amylovora’ya karşı antibakteriyel etkisinin belirlenmesi, Tekirdağ Ziraat Fakültesi Dergisi, 16(1), 34-41.
  • Anonymous, 2013. Food and Agriculture Organization (FAO), http://faostat3.fao.org/browse/Q/QC/E (Accessed 2 April 2013).
  • Bajpai V.K., Sharma A., Baek K.H., 2013. Antibacterial mode of action of Cudrania tricuspi-data fruit essential oil, affecting membrane permeability and surface characteristics of food borne pathogens. Food Control; 32, 582–590
  • Bakkali F., Averbeck S., Averbeck D., Idaomar M., 2008. Biological Effects of Essential Oils. Review. Food and Chemical Toxicology, 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  • Benner, J.P., 1993. Pesticidal compounds from higher plants. Pest Sci. 39(2),95–102.
  • Ceylan O., Ugur A., 2015. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil. Archives of Phar-macal Research, 38(6), 957–965. https://doi.org/10.1007/s12272-014-0516-0.
  • Chouhan S., Sharma K., and Guleria S., 2017. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines, 4(58). doi:10.3390/medicines4030058.
  • Cowan, M.M., 1999. Plant products as antimicrobial agents. Clin Microbiol Rev,12(4),64–82.
  • Duke, SO., 1990. Advances in new crops. In: Natural pesticides from plants. Portland (OR):Timber Press. 511–517.
  • El-Alam I., Zgheib R., Iriti M., El Beyrouthy M., Hattouny P., Verdin A., Fontaine J., Chahine R., Sahraoui, Makhlouf H., 2019. Origanum syriacum Essential Oil Chemical Poly-morphism According to Soil Type. Foods, 8 (3), 90. https://doi.org/10.3390/foods8030090.
  • Feng W., Zheng X., 2007. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 18, 1126–1130. http://dx.doi.org/10.1016/j.foodcont.2006.05.017.
  • Gorris L.G.M., Smid E.J., 1995. Crop protection using natural antifungal compounds. Pestic Outlook, 6 (5), 20–24.
  • Herriot A.B., Haynes F.L. Jr., Shoemaker P.B., 1986. The heritability of resistance to early blight in diploid potatoes (Solanum tuberosum subsp. phureja and stenotonum). Am Potato J, 63, 229–232.
  • Heuvelink, E., 1996. Tomato Growth and Yield: Quantitative Analysis and Synthesis. Disser-tation. Wageningen Agricultural University, Wageningen, The Netherlands, p, 326 (English, Dutch and German summaries).
  • Hua Y., Zhang J., Kong W., Zhao G., Yang M., 2017. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergil-lus flavus. Food Chem., 220, 1–8.
  • Iscan G., Iscan A., Demirci F., 2016. Anticandidal effects of thymoquinone : Mode of action determined bytransmission electron microscopy (TEM). Nat. Prod. Commun. 11, 977–978.
  • Isman, MB., 2000. Plant essential oils for pest and disease management. Crop Prot. 19 (8-10) 603–608.
  • Jegathambigai V., Wijeratnam R.S.W., Wijesundera R.L.C., 2010. Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathol. J., 9, 47-55.
  • Kara, M., Soylu, S., Türkmen, M., Kaya, D.A., 2020. Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Tekirdağ Ziraat Fakültesi Dergisi, 17 (2), 264-275.
  • Kılıç, T., 2015. Analysis of Essential Oil Composition of Thymbra spicata var. spicata Anti-fungal, Antibacterial and Antimycobacterial Activities. Zeitschrift Für Naturforschung C, 61(5–6), 324–328. https://doi.org/10.1515/znc-2006-5-604.
  • Kordali S., Kilic H., Mavi A., Cakir A., Yildirim A., 2005. Screening of Chemical Composi-tion and Antifungal and Antioxidant Activities of the Essential Oils from Three Turkish Ar-temisia Species. Journal of Agricultural and Food Chemistry, 53 (5), 1408–1416. https://doi.org/10.1021/jf048429n.
  • Kumar A., Shukla R., Singh P., Prasad C.S., Dubey N.K., 2008. Assessment of Thymus vul-garis L. Essential Oil as a SafeBotanical Preservative Against Post-Harvest Fungal Infestation of Food Commodities, Innov. Food Sci. Emerg. Technol., 9, 575 – 580.
  • Lawless, J., 2002. Encyclopedia of essential oils. London (UK): Thorsons Publishers.
  • Lopez-Reyes jG., Spadaro D., Gullino M.L., Garibaldi A., 2010. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo, Flavour Fragrance Journal, 25, 171-177.
  • Lyr H., Russell P.E., Dehne H.W., Siseer H.D. (1999). Modern fungicides and antifungal compounds II. First ed. SC (USA): Intercept Ltd.
  • Mathur K., Shkhawat K.S., 1986. Chemical control of early blight in Kharif sown tomato. Indian Journal of Mycology Plant Pathology, 16, 235-238.
  • Mohammadi S., Aminifard M.H., 2012. Effect of Essential Oils on Postharvest Decay and Some Quality Factors of Peach (Prunus persica var. redhaven). J. BIOL. ENVIRON. SCI., 6 (17), 147-153.
  • Nerio L.S., Olivero-Verbel J., Stashenko E., 2010. Repellent activity of essential oils: a re-view. Bioresour. Technol. 101, 372–378. http://dx.doi.org/10.1016/j.biortech.
  • Özkan O.E., Güney K., Gür M., Pattabanoğlu E.S., Babat E., Khalifa M., 2017. Essential oil of oregano and savory; chemical composition and antimicrobial activity. Indian Journal of Pharmaceutical Education and Research, 51(3), 205–208. https://doi.org/10.5530/ijper.51.3s.13.
  • Phillips C.A., Laird K., Allen S.C., 2012. The use of Citrian antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International, 47, 310–314.
  • Prerna N., Vasudeva N., 2015. Origanum majorana L. -Phyto-pharmacological review. Indian Journal of Natural Products and Resources, 6 (4), 261–267.
  • Pretorius J.C., Zietsman P.C., Eksteen D., 2002. Fungitoxic properties of selected South Afri-can plant species against plant pathogens of economic importance in agriculture. Ann Appl Biol, 141(2),117–124.
  • Regnault-Roger C., Vincent C., Arnason J.T., 2012. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol., 57, 405-424.
  • Simmonds M.S.J., Evans H.C., Blaney W.M., 1992. Pest management and the environment in 2000. In: Pesticides for the year 2000: mycochemicals and botanicals. Wallingford (UK): CAB International. 127–164.
  • Sivakumar D., Bautista-Baños S., 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27–37. https://doi.org/10.1016/j.cropro.2014.05.012.
  • Smith L.J., Kotcon, 2002. Intercropping with tomato resistant variety ‘Juliet’ reduces early blight on susceptible variety ‘brandywine’. Phytopathology, 92: 77.
  • Tasdemir D., Kaiser M., Demirci F., Baser K., 2017. Essential oil of Turkish Origanum onites L. and its main components, carvacrol and thymol show potent antiprotozoal activity without cytotoxicity. Planta Medica, 72 (11), 1–2. https://doi.org/10.1055/s-2006-949877.
  • Tian J., Ban X., Zeng H., He J., Chen Y., Wang Y., 2012. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. Plos One 7 (1), 1-8. http://dx.doi.org/10.1371/journal.pone.0030147.
  • Tomazini E.Z., Pauletti G.F., Ribeiro R.T.S., Moura S., Schwambach J., 2017. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci-entia Horticulturae 223, 72–77.
  • Tozlu E., Cakir A., Kordali S., Tozlu G., Ozer H., Aytas A.T., 2011. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Scientia Horticulturae, 130 (1), 9–17. https://doi.org/10.1016/j.scienta.2011.06.019.
  • Üstüner, T., Ş. Kordalı, A. Usanmaz Bozhüyük & M. Kesdek, 2018. Investigation of pesti-cidal activities of essential oil of Eucalyptus camaldulensis Dehnh. Records of Natural Prod-ucts, 12 (6): 557-568.)
  • Üstüner T, Kordali K, and Usanmaz Bozhüyük A, 2018. Herbicidal and Fungicidal Effects of Cuminum cyminum, Mentha longifolia and Allium sativum Essential Oils on Some Weeds and Fungi. Rec. Nat. Prod. 12(6) 619-629.
  • Ustuner T, Usanmaz Bozhuyuk A, Komaki A, Kordali S., 2019. Assessment of the growth inhibiting effect of Satureja essentiel oils on different Fusarium speceis from Wheat. Fresenius Environmental Bulletin. 28 (11): 8199-8206.

Exploring the Antifungal Efficacy of Essential Oils against Alternaria solani, the Causative Pathogen of Early Leaf Blight in Tomato Plants

Year 2024, Volume: 7 Issue: 2, 12 - 23
https://doi.org/10.55257/ethabd.1512589

Abstract

Alternaria solani is an important necrotrophic fungus that is responsible for the early blight disease which is a common disease in tomato fields. In this research, the antifungal activity of essential oils extracted from Satureja hortensis, Thymbra spicata, Thymus sipyleus, Origanum majorana, O. syriacium, O. onites, O. vulgar, Artemisia absinthium, A. santonicum and A. spicigera were tested against Alternaria solani the causative agent of Tomato early blight disease. The study was carried out in two different ways, in vitro and in vivo. In vitro studies were conducted on media mixed with essential oils, and different concentrations of oils were examined on fungal growth in petri dishes. In in vivo studies, the effects of essential oils on the development of disease lesions were evaluated by infecting healthy tomato fruits. The concentrations used in the study were 140, 280, 560 and 1000 µl/L in the in vitro and 2.5, 5, 10 and 20 µl/fruit under in vivo conditions. Among the in vitro trials, the essential oils extracted from Thymus sipyleus and O. onites exhibited the most pronounced antifungal efficacy, achieving complete growth inhibition of the fungal pathogen across all concentrations whereas the essential oils from Artemisia spicigera and A. santonicum displayed relatively lower efficacy compared to the other oils. Conversely, under in vivo conditions, the essential oils derived from O. majorana and A. absinthium demonstrated the greatest capacity to impede the development of disease lesions on the fruit, yielding inhibition rates of 84% and 64% at 2.5 µl per fruit concentrations, respectively. In contrast the essential oils from Artemisia spicigera and A. santonicum had the least effect on the development of the disease, as there was disease lesions appeared even on the fruits that were applied at 20µl/fruit doses. Although most of the essential oils had some degree of antifungal action, still much effort is needed to put on both in vitro and in vivo trials to strength the reliability and consistency of the future related researches.

References

  • Abeysinghe, S., 2009. Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on biological control of Rhizoctonia solani on Solanum melongena and Cap-sicum annum. Archives ofPhytopathology and Plant Protection 42 (3), 221-2.
  • Agrios, G.N., 2005. Plant Pathology. 5th. New York: Elsevier.
  • Aktepe, B.P., Mertoğlu, K., Evrenosoğlu, Y., Aysan, Y., 2019. Farklı bitki uçucu yağların Erwinia amylovora’ya karşı antibakteriyel etkisinin belirlenmesi, Tekirdağ Ziraat Fakültesi Dergisi, 16(1), 34-41.
  • Anonymous, 2013. Food and Agriculture Organization (FAO), http://faostat3.fao.org/browse/Q/QC/E (Accessed 2 April 2013).
  • Bajpai V.K., Sharma A., Baek K.H., 2013. Antibacterial mode of action of Cudrania tricuspi-data fruit essential oil, affecting membrane permeability and surface characteristics of food borne pathogens. Food Control; 32, 582–590
  • Bakkali F., Averbeck S., Averbeck D., Idaomar M., 2008. Biological Effects of Essential Oils. Review. Food and Chemical Toxicology, 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  • Benner, J.P., 1993. Pesticidal compounds from higher plants. Pest Sci. 39(2),95–102.
  • Ceylan O., Ugur A., 2015. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil. Archives of Phar-macal Research, 38(6), 957–965. https://doi.org/10.1007/s12272-014-0516-0.
  • Chouhan S., Sharma K., and Guleria S., 2017. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines, 4(58). doi:10.3390/medicines4030058.
  • Cowan, M.M., 1999. Plant products as antimicrobial agents. Clin Microbiol Rev,12(4),64–82.
  • Duke, SO., 1990. Advances in new crops. In: Natural pesticides from plants. Portland (OR):Timber Press. 511–517.
  • El-Alam I., Zgheib R., Iriti M., El Beyrouthy M., Hattouny P., Verdin A., Fontaine J., Chahine R., Sahraoui, Makhlouf H., 2019. Origanum syriacum Essential Oil Chemical Poly-morphism According to Soil Type. Foods, 8 (3), 90. https://doi.org/10.3390/foods8030090.
  • Feng W., Zheng X., 2007. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 18, 1126–1130. http://dx.doi.org/10.1016/j.foodcont.2006.05.017.
  • Gorris L.G.M., Smid E.J., 1995. Crop protection using natural antifungal compounds. Pestic Outlook, 6 (5), 20–24.
  • Herriot A.B., Haynes F.L. Jr., Shoemaker P.B., 1986. The heritability of resistance to early blight in diploid potatoes (Solanum tuberosum subsp. phureja and stenotonum). Am Potato J, 63, 229–232.
  • Heuvelink, E., 1996. Tomato Growth and Yield: Quantitative Analysis and Synthesis. Disser-tation. Wageningen Agricultural University, Wageningen, The Netherlands, p, 326 (English, Dutch and German summaries).
  • Hua Y., Zhang J., Kong W., Zhao G., Yang M., 2017. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergil-lus flavus. Food Chem., 220, 1–8.
  • Iscan G., Iscan A., Demirci F., 2016. Anticandidal effects of thymoquinone : Mode of action determined bytransmission electron microscopy (TEM). Nat. Prod. Commun. 11, 977–978.
  • Isman, MB., 2000. Plant essential oils for pest and disease management. Crop Prot. 19 (8-10) 603–608.
  • Jegathambigai V., Wijeratnam R.S.W., Wijesundera R.L.C., 2010. Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathol. J., 9, 47-55.
  • Kara, M., Soylu, S., Türkmen, M., Kaya, D.A., 2020. Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Tekirdağ Ziraat Fakültesi Dergisi, 17 (2), 264-275.
  • Kılıç, T., 2015. Analysis of Essential Oil Composition of Thymbra spicata var. spicata Anti-fungal, Antibacterial and Antimycobacterial Activities. Zeitschrift Für Naturforschung C, 61(5–6), 324–328. https://doi.org/10.1515/znc-2006-5-604.
  • Kordali S., Kilic H., Mavi A., Cakir A., Yildirim A., 2005. Screening of Chemical Composi-tion and Antifungal and Antioxidant Activities of the Essential Oils from Three Turkish Ar-temisia Species. Journal of Agricultural and Food Chemistry, 53 (5), 1408–1416. https://doi.org/10.1021/jf048429n.
  • Kumar A., Shukla R., Singh P., Prasad C.S., Dubey N.K., 2008. Assessment of Thymus vul-garis L. Essential Oil as a SafeBotanical Preservative Against Post-Harvest Fungal Infestation of Food Commodities, Innov. Food Sci. Emerg. Technol., 9, 575 – 580.
  • Lawless, J., 2002. Encyclopedia of essential oils. London (UK): Thorsons Publishers.
  • Lopez-Reyes jG., Spadaro D., Gullino M.L., Garibaldi A., 2010. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo, Flavour Fragrance Journal, 25, 171-177.
  • Lyr H., Russell P.E., Dehne H.W., Siseer H.D. (1999). Modern fungicides and antifungal compounds II. First ed. SC (USA): Intercept Ltd.
  • Mathur K., Shkhawat K.S., 1986. Chemical control of early blight in Kharif sown tomato. Indian Journal of Mycology Plant Pathology, 16, 235-238.
  • Mohammadi S., Aminifard M.H., 2012. Effect of Essential Oils on Postharvest Decay and Some Quality Factors of Peach (Prunus persica var. redhaven). J. BIOL. ENVIRON. SCI., 6 (17), 147-153.
  • Nerio L.S., Olivero-Verbel J., Stashenko E., 2010. Repellent activity of essential oils: a re-view. Bioresour. Technol. 101, 372–378. http://dx.doi.org/10.1016/j.biortech.
  • Özkan O.E., Güney K., Gür M., Pattabanoğlu E.S., Babat E., Khalifa M., 2017. Essential oil of oregano and savory; chemical composition and antimicrobial activity. Indian Journal of Pharmaceutical Education and Research, 51(3), 205–208. https://doi.org/10.5530/ijper.51.3s.13.
  • Phillips C.A., Laird K., Allen S.C., 2012. The use of Citrian antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International, 47, 310–314.
  • Prerna N., Vasudeva N., 2015. Origanum majorana L. -Phyto-pharmacological review. Indian Journal of Natural Products and Resources, 6 (4), 261–267.
  • Pretorius J.C., Zietsman P.C., Eksteen D., 2002. Fungitoxic properties of selected South Afri-can plant species against plant pathogens of economic importance in agriculture. Ann Appl Biol, 141(2),117–124.
  • Regnault-Roger C., Vincent C., Arnason J.T., 2012. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol., 57, 405-424.
  • Simmonds M.S.J., Evans H.C., Blaney W.M., 1992. Pest management and the environment in 2000. In: Pesticides for the year 2000: mycochemicals and botanicals. Wallingford (UK): CAB International. 127–164.
  • Sivakumar D., Bautista-Baños S., 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27–37. https://doi.org/10.1016/j.cropro.2014.05.012.
  • Smith L.J., Kotcon, 2002. Intercropping with tomato resistant variety ‘Juliet’ reduces early blight on susceptible variety ‘brandywine’. Phytopathology, 92: 77.
  • Tasdemir D., Kaiser M., Demirci F., Baser K., 2017. Essential oil of Turkish Origanum onites L. and its main components, carvacrol and thymol show potent antiprotozoal activity without cytotoxicity. Planta Medica, 72 (11), 1–2. https://doi.org/10.1055/s-2006-949877.
  • Tian J., Ban X., Zeng H., He J., Chen Y., Wang Y., 2012. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. Plos One 7 (1), 1-8. http://dx.doi.org/10.1371/journal.pone.0030147.
  • Tomazini E.Z., Pauletti G.F., Ribeiro R.T.S., Moura S., Schwambach J., 2017. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci-entia Horticulturae 223, 72–77.
  • Tozlu E., Cakir A., Kordali S., Tozlu G., Ozer H., Aytas A.T., 2011. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Scientia Horticulturae, 130 (1), 9–17. https://doi.org/10.1016/j.scienta.2011.06.019.
  • Üstüner, T., Ş. Kordalı, A. Usanmaz Bozhüyük & M. Kesdek, 2018. Investigation of pesti-cidal activities of essential oil of Eucalyptus camaldulensis Dehnh. Records of Natural Prod-ucts, 12 (6): 557-568.)
  • Üstüner T, Kordali K, and Usanmaz Bozhüyük A, 2018. Herbicidal and Fungicidal Effects of Cuminum cyminum, Mentha longifolia and Allium sativum Essential Oils on Some Weeds and Fungi. Rec. Nat. Prod. 12(6) 619-629.
  • Ustuner T, Usanmaz Bozhuyuk A, Komaki A, Kordali S., 2019. Assessment of the growth inhibiting effect of Satureja essentiel oils on different Fusarium speceis from Wheat. Fresenius Environmental Bulletin. 28 (11): 8199-8206.
There are 45 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Articles
Authors

Mohamed Said Omar 0000-0003-1421-3114

Şaban Kordalı 0009-0008-6669-9332

Early Pub Date September 11, 2024
Publication Date
Submission Date July 8, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Said Omar, M., & Kordalı, Ş. (2024). Exploring the Antifungal Efficacy of Essential Oils against Alternaria solani, the Causative Pathogen of Early Leaf Blight in Tomato Plants. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 7(2), 12-23. https://doi.org/10.55257/ethabd.1512589