Research Article
BibTex RIS Cite

Palmiye Yağı Tarımını Optimize Etmek İçin Akıllı Tarım Çözümleri

Year 2025, Volume: 8 Issue: 1, 119 - 126, 30.06.2025
https://doi.org/10.55257/ethabd.1703723

Abstract

Palmiye yağı endüstrisi, önemli bir bitkisel yağ kaynağı sağlayarak ve önemli ekonomik faaliyet yaratarak küresel tarım sektöründe önemli bir rol oynar. Ancak endüstri, çevresel endişeler, işgücü kıtlığı ve üretkenliği ve verimliliği artırma ihtiyacı gibi çeşitli zorluklarla karşı karşıyadır. Bu çalışmada, akıllı tarım çözümlerinin bu zorlukları ele almak ve palmiye yağı tarımını optimize etmek için nasıl kullanılabileceğini incelenmiştir. Bu temadaki makaleler, yağlık palmiye ağacı yetiştiriciliğini geliştirmek için hassas çiftçilik, IoT tabanlı izleme sistemleri ve veri analitiği gibi ortaya çıkan teknolojilerin uygulanmasını araştırmıştır. Bu çözümlerin kaynak yönetimini iyileştirmeye, rutin görevleri otomatikleştirmeye ve çiftçilere ve plantasyon yöneticilerine değerli öngörüler sağlamaya nasıl yardımcı olabileceğini araştırılmıştır. Araştırma ayrıca, yağ palmiyesi üretiminin çevresel etkisini en aza indirmek için hassas gübreleme ve su yönetimi gibi sürdürülebilir uygulamaların entegrasyonunu da ele alınmıştır. Dahası, tema akıllı tarım çözümlerinin sosyoekonomik yönlerini inceler, işgücü kıtlığını giderme, çalışma koşullarını iyileştirme ve yağ palmiyesi endüstrisinde yeni istihdam fırsatları yaratma potansiyellerini analiz edilmiştir. Çalışmada ayrıca bu teknolojilerin benimsenmesindeki zorlukları ve engelleri ve başarılı uygulama ve ölçeklenebilirlik stratejilerini tartışılmıştır. Bu çalışma, yenilikçi akıllı tarım çözümlerini ve bunların palmiye yağı tarımı üzerindeki etkilerini sergileyerek, palmiye yağı endüstrisinin sürdürülebilirliğini, üretkenliğini ve dayanıklılığını artırmaya yönelik devam eden çabalara katkıda bulunmayı ve nihayetinde üreticilere, tüketicilere ve çevreye fayda sağlamayı amaçlamaktadır.

References

  • Ahmadi, P., Muharam, F. M., Ahmad, F., Mansor, S., & Seman, I. A. (2017). Early detection of Ganoderma disease in oil palm plantations using remote sensing techniques. Plant Disease, 101(6), 1009–1018.
  • Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69.
  • de la Fuente, D., Rivilla, E., Tena, A., Vitorino, J., Navascués, E., & Tabasco, A. (2023). Yield estimation using machine learning from satellite imagery. BIO Web of Conferences, 68, 01013.
  • En, G. W., & Hui, I. T. S. (2023). Development of smart farming technologies in Malaysia – Insights from bibliometric analysis. Lembaga Pemasaran Pertanian Persekutuan, 10(1), 30–48.
  • FAO. (2022). Digital agriculture and innovation in rural areas. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/cb9236en/cb9236en.pdf
  • GODAN. (2019). The role of data in achieving sustainable agriculture and food security. Global Open Data for Agriculture and Nutrition. https://www.godan.info/sites/default/files/documents/GODAN_Strategic_Plan.pdf
  • Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798–810.
  • Jawadiab, R. A. M. A., Ahmad, D., Nawi, N. M., & Kassim, M. S. M. (2018). Mechanized harvesting of oil palm fresh fruit bunches: A review. In Proceedings of the 7th Kuala Lumpur International Agriculture, Forestry and Plantation Conference (pp. 77–89), 10–11 December 2018, Hotel Bangi-Putrajaya, Bangi, Malaysia.
  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2018). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.
  • Karhale, S., Wongamthing, R., Nengparmoi, T., & Kemprai, S. (2024). Drone technology and its application in agriculture. In Emerging trends in climate action for sustainable development (pp. 81–92). Research Floor.
  • Meijaard, E., Brooks, T. M., Carlson, K. M., Slade, E. M., Garcia-Ulloa, J., Gaveau, D. L. A., & Sheil, D. (2020). The environmental impacts of palm oil in context. Nature Plants, 6, 1418–1426.
  • Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17(7), 2261–2270.
  • OECD/FAO. (2021). OECD-FAO agricultural outlook 2021–2030. OECD Publishing. https://doi.org/10.1787/19428846 126
  • Udutalapally, V., Mohanty, S. P., Pallagani, V., & Khandelwal, V. (2021). sCrop: A novel device for sustainable automatic disease prediction, crop selection, and irrigation in Internet-of-Agro-Things for smart agriculture. IEEE Sensors Journal, 21(16), 17525–17538.
  • Verdejo, H., Holz, M., Becker, C., Tobar, F., & García-Muñoz, F. (2022). Mechanism for Financing the Accumulated Debt of Utility Services Water, Electricity and Gas as a Result of the COVID-19. Sustainability, 14(6), 3617
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
  • World Bank. 2021. World Development Report 2021: Data for Better Lives. World Bank Group.
  • Zhang, Y., Wang, G., & Dong, J. (2019). Smart agriculture in developing countries: A review. Agricultural Economics and Policy, 8(1), 1–12.

Smart Agriculture Solutions to Optimize Oil Palm Farming

Year 2025, Volume: 8 Issue: 1, 119 - 126, 30.06.2025
https://doi.org/10.55257/ethabd.1703723

Abstract

The oil palm industry plays a crucial role in the global agricultural landscape, providing an important source of vegetable oil and generating significant economic activity. However, the industry faces various challenges, including environmental concerns, labor shortages, and the need to improve productivity and efficiency. This theme examines how smart agriculture solutions can be leveraged to address these challenges and optimize oil palm farming. The papers in this theme explore the application of emerging technologies, such as precision farming, IoT-based monitoring systems, and data analytics, to enhance oil palm cultivation. They investigate how these solutions can help improve resource management, automate routine tasks, and provide valuable insights to farmers and plantation managers. The research also considers the integration of sustainable practices, such as precision fertilization and water management, to minimize the environmental impact of oil palm production. Furthermore, the theme delves into the socioeconomic aspects of smart agriculture solutions, analyzing their potential to address labor shortages, improve working conditions, and create new employment opportunities in the oil palm industry. The papers also discuss the challenges and barriers to the adoption of these technologies, as well as strategies for successful implementation and scalability. By showcasing innovative smart agriculture solutions and their impact on oil palm farming, this theme aims to contribute to the ongoing efforts to enhance the sustainability, productivity, and resilience of the oil palm industry, ultimately benefiting producers, consumers, and the environment.

References

  • Ahmadi, P., Muharam, F. M., Ahmad, F., Mansor, S., & Seman, I. A. (2017). Early detection of Ganoderma disease in oil palm plantations using remote sensing techniques. Plant Disease, 101(6), 1009–1018.
  • Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69.
  • de la Fuente, D., Rivilla, E., Tena, A., Vitorino, J., Navascués, E., & Tabasco, A. (2023). Yield estimation using machine learning from satellite imagery. BIO Web of Conferences, 68, 01013.
  • En, G. W., & Hui, I. T. S. (2023). Development of smart farming technologies in Malaysia – Insights from bibliometric analysis. Lembaga Pemasaran Pertanian Persekutuan, 10(1), 30–48.
  • FAO. (2022). Digital agriculture and innovation in rural areas. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/cb9236en/cb9236en.pdf
  • GODAN. (2019). The role of data in achieving sustainable agriculture and food security. Global Open Data for Agriculture and Nutrition. https://www.godan.info/sites/default/files/documents/GODAN_Strategic_Plan.pdf
  • Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798–810.
  • Jawadiab, R. A. M. A., Ahmad, D., Nawi, N. M., & Kassim, M. S. M. (2018). Mechanized harvesting of oil palm fresh fruit bunches: A review. In Proceedings of the 7th Kuala Lumpur International Agriculture, Forestry and Plantation Conference (pp. 77–89), 10–11 December 2018, Hotel Bangi-Putrajaya, Bangi, Malaysia.
  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2018). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.
  • Karhale, S., Wongamthing, R., Nengparmoi, T., & Kemprai, S. (2024). Drone technology and its application in agriculture. In Emerging trends in climate action for sustainable development (pp. 81–92). Research Floor.
  • Meijaard, E., Brooks, T. M., Carlson, K. M., Slade, E. M., Garcia-Ulloa, J., Gaveau, D. L. A., & Sheil, D. (2020). The environmental impacts of palm oil in context. Nature Plants, 6, 1418–1426.
  • Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17(7), 2261–2270.
  • OECD/FAO. (2021). OECD-FAO agricultural outlook 2021–2030. OECD Publishing. https://doi.org/10.1787/19428846 126
  • Udutalapally, V., Mohanty, S. P., Pallagani, V., & Khandelwal, V. (2021). sCrop: A novel device for sustainable automatic disease prediction, crop selection, and irrigation in Internet-of-Agro-Things for smart agriculture. IEEE Sensors Journal, 21(16), 17525–17538.
  • Verdejo, H., Holz, M., Becker, C., Tobar, F., & García-Muñoz, F. (2022). Mechanism for Financing the Accumulated Debt of Utility Services Water, Electricity and Gas as a Result of the COVID-19. Sustainability, 14(6), 3617
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
  • World Bank. 2021. World Development Report 2021: Data for Better Lives. World Bank Group.
  • Zhang, Y., Wang, G., & Dong, J. (2019). Smart agriculture in developing countries: A review. Agricultural Economics and Policy, 8(1), 1–12.
There are 18 citations in total.

Details

Primary Language English
Subjects Precision Agriculture Technologies
Journal Section Articles
Authors

Bahadır Demirel 0000-0002-2650-1167

Gürkan A. K. Gürdil 0000-0001-7764-3977

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date May 21, 2025
Acceptance Date June 26, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Demirel, B., & Gürdil, G. A. K. (2025). Smart Agriculture Solutions to Optimize Oil Palm Farming. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 8(1), 119-126. https://doi.org/10.55257/ethabd.1703723