Research Article
BibTex RIS Cite

Investigation of Behavioural Toxicity of Alpha-cypermethrin in Drosophila melanogaster

Year 2024, , 26 - 37, 03.05.2024
https://doi.org/10.59838/etoxec.1448491

Abstract

Pyrethroids are preferred insecticides due to their low toxic effect potential. Alpha-cypermethrin is an insecticide belonging to type 2 pyrethroid group which is widely used in agriculture, public and animal health applications. In this study, the effect of alpha-cypermethrin on behavioural toxicity in Drosophila melanogaster was investigated. The behavioural toxicity of alpha-cypermethrin applied at doses of 0,01; 0,05; 0,1 and 0,3 ppm to 724 hours old larvae developing from the eggs of Drosophila Oregon R+ line individuals was evaluated by pupation and pupal emergence success, adult individual mass measurement and negative geotaxis experiments. The results obtained showed that sublethal doses of alpha-cypermethrin did not cause any significant change in pupation and pupal emergence success of larvae and mass of adult individuals. The results obtained from the negative geotaxis experiment showed that alpha-cypermethrin caused a statistically significant decrease in the flight ability of adult individuals at all doses applied.

References

  • A.-M. Saillenfait vd., “Evaluation of the effects of α-cypermethrin on fetal rat testicular steroidogenesis”, Reprod. Toxicol., c. 72, ss. 106-114, Eyl. 2017, doi: 10.1016/j.reprotox.2017.06.133.
  • A. Gajendiran ve J. Abraham, “An overview of pyrethroid insecticides”, Front. Biol., c. 13, sy 2, ss. 79-90, Nis. 2018, doi: 10.1007/s11515-018-1489-z.
  • M.-A. Martínez vd., “Toxicologic evidence of developmental neurotoxicity of Type II pyrethroids cyfluthrin and alpha-cypermethrin in SH-SY5Y cells”, Food Chem. Toxicol., c. 137, s. 111173, Mar. 2020, doi: 10.1016/j.fct.2020.111173.
  • A. DeMicco, K. R. Cooper, J. R. Richardson, ve L. A. White, “Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos”, Toxicol. Sci., c. 113, sy 1, ss. 177-186, Oca. 2010, doi: 10.1093/toxsci/kfp258.
  • R. Iyadurai vd., “Pyrethroid poisoning: Insecticide with mild human toxicity”, Med. J. Armed Forces India, Kas. 2023, doi: 10.1016/j.mjafi.2023.09.009.
  • Y. S. Cha vd., “Pyrethroid poisoning: features and predictors of atypical presentations”, Emerg. Med. J., c. 31, sy 11, ss. 899-903, Kas. 2014, doi: 10.1136/emermed-2013-202908.
  • E. Cham, J. Tse, Y. Chong, M. Chen, O. Wong, ve H. Fung, “A Case of Pyrethroid Poisoning with Clinical Presentation Mimicking Organophosphate Poisoning”, Hong Kong J. Emerg. Med., c. 23, sy 2, ss. 47-51, Mar. 2016, doi: 10.1177/102490791602300207.
  • W. Bao, B. Liu, D. W. Simonsen, ve H.-J. Lehmler, “Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population”, JAMA Intern. Med., c. 180, sy 3, ss. 367-374, Mar. 2020, doi: 10.1001/jamainternmed.2019.6019.
  • V. Žikić vd., “Effect of α-cypermethrin and pirimiphos-methyl on wing morphology of Tribolium castaneum (Herbst) and T. confusum Jacquelin du Val: a comparative study”, Environ. Sci. Pollut. Res., c. 31, sy 1, ss. 895-908, Kas. 2023, doi: 10.1007/s11356-023-30783-3.
  • W. Tang vd., “Pyrethroid pesticide residues in the global environment: An overview”, Chemosphere, c. 191, ss. 990-1007, Oca. 2018, doi: 10.1016/j.chemosphere.2017.10.115.
  • A.-M. Saillenfait, D. Ndiaye, ve J.-P. Sabaté, “Pyrethroids: exposure and health effects--an update”, Int. J. Hyg. Environ. Health, c. 218, sy 3, ss. 281-292, May. 2015, doi: 10.1016/j.ijheh.2015.01.002.
  • S. M. Ensley, “Chapter 39 - Pyrethrins and Pyrethroids”, içinde Veterinary Toxicology (Third Edition), R. C. Gupta, Ed., Academic Press, 2018, ss. 515-520. doi: 10.1016/B978-0-12-811410-0.00039-8.
  • J. J. Soares vd., “Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster”, Anal. Biochem., c. 537, ss. 60-62, Kas. 2017, doi: 10.1016/j.ab.2017.08.016.
  • A. Fauzi, S. Zubaidah, ve H. Susanto, “The study of larva and adult behavior of drosophila melanogaster: Do strains affect behavior?”, AIP Conf. Proc., c. 2231, 2020, doi: 10.1063/5.0002429.
  • M. Ulfah vd., “Insecticidal activity of essential oil of syzygium aromaticum flower in drosophila”, Biointerface Res. Appl. Chem., c. 12, sy 2, ss. 2669-2677, 2022, doi: 10.33263/BRIAC122.26692677.
  • Behrens, B., ve G. Karber. 1983, “Mathematics for Naturalists and Agriculturalists”, PWN, Warszawa. Pp. 218.
  • A. Y. Kurşun, B. Yalci̇n, M. Güneş, G. Tagorti̇, ve B. Kaya, “MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendis. Bilim. Derg., c. 21, sy 6, Art. sy 6, Ara. 2021, doi: 10.35414/akufemubid.931922.
  • S. B. Manjila ve G. Hasan, “Flight and Climbing Assay for Assessing Motor Functions in Drosophila”, Bio-Protoc., c. 8, sy 5, s. e2742, Mar. 2018, doi: 10.21769/BioProtoc.2742.
  • A. Özkara, “Assessment of Mutagenic Activity of Karate Zeon Pesticide by Ames Test”, Afyon Kocatepe Üniversitesi Fen ve Mühendis. Bilim. Derg., c. 22, sy 3, Art. sy 3, Haz. 2022, doi: 10.35414/akufemubid.1069842.
  • L. Barrios-Arpi vd., “In Vitro Neurotoxicity of Flumethrin Pyrethroid on SH-SY5Y Neuroblastoma Cells: Apoptosis Associated with Oxidative Stress”, Toxics, c. 10, sy 3, s. 131, Mar. 2022, doi: 10.3390/toxics10030131.
  • M. R. R. Laborde, M. L. Larramendy, ve S. Soloneski, “Cytotoxic and genotoxic profiles of the pyrethroid insecticide lambda-cyhalothrin and its microformulation Karate® in CHO-K1 cells”, Mutat. Res. Toxicol. Environ. Mutagen., c. 891, s. 503682, Eki. 2023, doi: 10.1016/j.mrgentox.2023.503682.
  • S. Manna, D. Bhattacharyya, T. K. Mandal, ve S. Das, “Repeated dose toxicity of alfa-cypermethrin in rats”, J. Vet. Sci., c. 5, sy 3, s. 241, 2004, doi: 10.4142/jvs.2004.5.3.241.
  • R. Sarıkaya, “Investigation of Acute Toxicity of Alpha-Cypermethrin on Adult Nile Tilapia (Oreochromis niloticus L.)”, 2009.
  • M. Gürkan, S. Serbest, ve S. Hayretdağ, “Acute toxicity of the synthetic pyrethroid alpha-cypermethrin on the tadpoles of variable green toad, Bufotes variabilis (Amphibia:Anura)”, Ege J. Fish. Aquat. Sci., c. 33, sy 4, ss. 367-371, Ara. 2016, doi: 10.12714/egejfas.2016.33.4.10.
  • E. Tooming, E. Merivee, A. Must, I. Sibul, ve I. Williams, “Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac® 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae)”, Pest Manag. Sci., c. 70, sy 6, ss. 959-966, 2014, doi: 10.1002/ps.3636.
  • J.-F. Viel vd., “Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: the PELAGIE mother–child cohort”, Occup. Environ. Med., c. 74, sy 4, ss. 275-281, Nis. 2017, doi: 10.1136/oemed-2016-104035.
  • E. Coker vd., “Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort”, Environ. Int., c. 113, ss. 122-132, Nis. 2018, doi: 10.1016/j.envint.2018.01.016.
  • J. F. Shelton vd., “Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study”, Environ. Health Perspect., c. 122, sy 10, ss. 1103-1109, Eki. 2014, doi: 10.1289/ehp.1307044.
  • L. Hocine, H. Merzouk, S. A. Merzouk, H. Ghorzi, M. Youbi, ve M. Narce, “The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns”, Pestic. Biochem. Physiol., c. 134, ss. 49-54, Kas. 2016, doi: 10.1016/j.pestbp.2016.04.007.
  • H. Ghorzi, H. Merzouk, L. Hocine, ve S. A. Merzouk, “Long term biochemical changes in offspring of rats fed diet containing alpha-cypermethrin”, Pestic. Biochem. Physiol., c. 142, ss. 133-140, Eki. 2017, doi: 10.1016/j.pestbp.2017.05.010.
  • A. Chaudhuri vd., “Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling”, Chemosphere, c. 248, s. 126037, Haz. 2020, doi: 10.1016/j.chemosphere.2020.126037.
  • D. E. Janner vd., “Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster”, Neurotoxicology, c. 85, ss. 79-89, Tem. 2021, doi: 10.1016/j.neuro.2021.05.006.
  • P. Grandjean ve P. J. Landrigan, “Neurobehavioural effects of developmental toxicity”, Lancet Neurol., c. 13, sy 3, ss. 330-338, Mar. 2014, doi: 10.1016/S1474-4422(13)70278-3.
  • A. Sarkar vd., “Role of cerium oxide nanoparticles in improving oxidative stress and developmental delays in Drosophila melanogaster as an in-vivo model for bisphenol a toxicity”, Chemosphere, c. 284, s. 131363, Ara. 2021, doi: 10.1016/j.chemosphere.2021.131363.

Alfa-sipermetrin’in Davranışsal Toksisitesinin Drosophila melanogaster’de İncelenmesi

Year 2024, , 26 - 37, 03.05.2024
https://doi.org/10.59838/etoxec.1448491

Abstract

Piretroidler toksik etki potansiyellerinin düşük olması nedeni ile kullanımı tercih edilen insektisitlerdir. Alfa-sipermetrin tarım, halk ve hayvan sağlığı uygulamalarında yaygın olarak kullanılan tip 2 piretroid grubuna ait bir insektisittir. Bu çalışmada alfa-sipermetrin’in Drosophila melanogaster’de davranışsal toksisiteye etkisi araştırılmıştır. Drosophila Oregon R+ hattına ait bireylerin yumurtalarından gelişen 724 saatlik larvalara 0,01; 0,05; 0,1 ve 0,3 ppm dozlarında uygulanan alfa-sipermetrin’in pupa oluşturma ve pupadan çıkış başarısı, ergin birey kütle ölçümü ve negatif jeotaksis deneyleri ile davranışsal toksisitesi değerlendirilmiştir. Elde edilen sonuçlar alfa-sipermetrin’in subletal dozlarının larvaların pupa oluşturma ve pupadan çıkış başarısı üzerinde ve ergin bireylerin kütleleri üzerinde anlamlı değişikliğe neden olmadığını göstermiştir. Negatif jeotaksis deneyinden elde edilen sonuçlar ise alfa-sipermetrin’in uygulanan tüm dozlarda ergin bireylerin uçuş kabiliyetlerinde istatistiksel olarak anlamlı azalmaya neden olduğunu göstermiştir.

References

  • A.-M. Saillenfait vd., “Evaluation of the effects of α-cypermethrin on fetal rat testicular steroidogenesis”, Reprod. Toxicol., c. 72, ss. 106-114, Eyl. 2017, doi: 10.1016/j.reprotox.2017.06.133.
  • A. Gajendiran ve J. Abraham, “An overview of pyrethroid insecticides”, Front. Biol., c. 13, sy 2, ss. 79-90, Nis. 2018, doi: 10.1007/s11515-018-1489-z.
  • M.-A. Martínez vd., “Toxicologic evidence of developmental neurotoxicity of Type II pyrethroids cyfluthrin and alpha-cypermethrin in SH-SY5Y cells”, Food Chem. Toxicol., c. 137, s. 111173, Mar. 2020, doi: 10.1016/j.fct.2020.111173.
  • A. DeMicco, K. R. Cooper, J. R. Richardson, ve L. A. White, “Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos”, Toxicol. Sci., c. 113, sy 1, ss. 177-186, Oca. 2010, doi: 10.1093/toxsci/kfp258.
  • R. Iyadurai vd., “Pyrethroid poisoning: Insecticide with mild human toxicity”, Med. J. Armed Forces India, Kas. 2023, doi: 10.1016/j.mjafi.2023.09.009.
  • Y. S. Cha vd., “Pyrethroid poisoning: features and predictors of atypical presentations”, Emerg. Med. J., c. 31, sy 11, ss. 899-903, Kas. 2014, doi: 10.1136/emermed-2013-202908.
  • E. Cham, J. Tse, Y. Chong, M. Chen, O. Wong, ve H. Fung, “A Case of Pyrethroid Poisoning with Clinical Presentation Mimicking Organophosphate Poisoning”, Hong Kong J. Emerg. Med., c. 23, sy 2, ss. 47-51, Mar. 2016, doi: 10.1177/102490791602300207.
  • W. Bao, B. Liu, D. W. Simonsen, ve H.-J. Lehmler, “Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population”, JAMA Intern. Med., c. 180, sy 3, ss. 367-374, Mar. 2020, doi: 10.1001/jamainternmed.2019.6019.
  • V. Žikić vd., “Effect of α-cypermethrin and pirimiphos-methyl on wing morphology of Tribolium castaneum (Herbst) and T. confusum Jacquelin du Val: a comparative study”, Environ. Sci. Pollut. Res., c. 31, sy 1, ss. 895-908, Kas. 2023, doi: 10.1007/s11356-023-30783-3.
  • W. Tang vd., “Pyrethroid pesticide residues in the global environment: An overview”, Chemosphere, c. 191, ss. 990-1007, Oca. 2018, doi: 10.1016/j.chemosphere.2017.10.115.
  • A.-M. Saillenfait, D. Ndiaye, ve J.-P. Sabaté, “Pyrethroids: exposure and health effects--an update”, Int. J. Hyg. Environ. Health, c. 218, sy 3, ss. 281-292, May. 2015, doi: 10.1016/j.ijheh.2015.01.002.
  • S. M. Ensley, “Chapter 39 - Pyrethrins and Pyrethroids”, içinde Veterinary Toxicology (Third Edition), R. C. Gupta, Ed., Academic Press, 2018, ss. 515-520. doi: 10.1016/B978-0-12-811410-0.00039-8.
  • J. J. Soares vd., “Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster”, Anal. Biochem., c. 537, ss. 60-62, Kas. 2017, doi: 10.1016/j.ab.2017.08.016.
  • A. Fauzi, S. Zubaidah, ve H. Susanto, “The study of larva and adult behavior of drosophila melanogaster: Do strains affect behavior?”, AIP Conf. Proc., c. 2231, 2020, doi: 10.1063/5.0002429.
  • M. Ulfah vd., “Insecticidal activity of essential oil of syzygium aromaticum flower in drosophila”, Biointerface Res. Appl. Chem., c. 12, sy 2, ss. 2669-2677, 2022, doi: 10.33263/BRIAC122.26692677.
  • Behrens, B., ve G. Karber. 1983, “Mathematics for Naturalists and Agriculturalists”, PWN, Warszawa. Pp. 218.
  • A. Y. Kurşun, B. Yalci̇n, M. Güneş, G. Tagorti̇, ve B. Kaya, “MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendis. Bilim. Derg., c. 21, sy 6, Art. sy 6, Ara. 2021, doi: 10.35414/akufemubid.931922.
  • S. B. Manjila ve G. Hasan, “Flight and Climbing Assay for Assessing Motor Functions in Drosophila”, Bio-Protoc., c. 8, sy 5, s. e2742, Mar. 2018, doi: 10.21769/BioProtoc.2742.
  • A. Özkara, “Assessment of Mutagenic Activity of Karate Zeon Pesticide by Ames Test”, Afyon Kocatepe Üniversitesi Fen ve Mühendis. Bilim. Derg., c. 22, sy 3, Art. sy 3, Haz. 2022, doi: 10.35414/akufemubid.1069842.
  • L. Barrios-Arpi vd., “In Vitro Neurotoxicity of Flumethrin Pyrethroid on SH-SY5Y Neuroblastoma Cells: Apoptosis Associated with Oxidative Stress”, Toxics, c. 10, sy 3, s. 131, Mar. 2022, doi: 10.3390/toxics10030131.
  • M. R. R. Laborde, M. L. Larramendy, ve S. Soloneski, “Cytotoxic and genotoxic profiles of the pyrethroid insecticide lambda-cyhalothrin and its microformulation Karate® in CHO-K1 cells”, Mutat. Res. Toxicol. Environ. Mutagen., c. 891, s. 503682, Eki. 2023, doi: 10.1016/j.mrgentox.2023.503682.
  • S. Manna, D. Bhattacharyya, T. K. Mandal, ve S. Das, “Repeated dose toxicity of alfa-cypermethrin in rats”, J. Vet. Sci., c. 5, sy 3, s. 241, 2004, doi: 10.4142/jvs.2004.5.3.241.
  • R. Sarıkaya, “Investigation of Acute Toxicity of Alpha-Cypermethrin on Adult Nile Tilapia (Oreochromis niloticus L.)”, 2009.
  • M. Gürkan, S. Serbest, ve S. Hayretdağ, “Acute toxicity of the synthetic pyrethroid alpha-cypermethrin on the tadpoles of variable green toad, Bufotes variabilis (Amphibia:Anura)”, Ege J. Fish. Aquat. Sci., c. 33, sy 4, ss. 367-371, Ara. 2016, doi: 10.12714/egejfas.2016.33.4.10.
  • E. Tooming, E. Merivee, A. Must, I. Sibul, ve I. Williams, “Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac® 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae)”, Pest Manag. Sci., c. 70, sy 6, ss. 959-966, 2014, doi: 10.1002/ps.3636.
  • J.-F. Viel vd., “Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: the PELAGIE mother–child cohort”, Occup. Environ. Med., c. 74, sy 4, ss. 275-281, Nis. 2017, doi: 10.1136/oemed-2016-104035.
  • E. Coker vd., “Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort”, Environ. Int., c. 113, ss. 122-132, Nis. 2018, doi: 10.1016/j.envint.2018.01.016.
  • J. F. Shelton vd., “Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study”, Environ. Health Perspect., c. 122, sy 10, ss. 1103-1109, Eki. 2014, doi: 10.1289/ehp.1307044.
  • L. Hocine, H. Merzouk, S. A. Merzouk, H. Ghorzi, M. Youbi, ve M. Narce, “The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns”, Pestic. Biochem. Physiol., c. 134, ss. 49-54, Kas. 2016, doi: 10.1016/j.pestbp.2016.04.007.
  • H. Ghorzi, H. Merzouk, L. Hocine, ve S. A. Merzouk, “Long term biochemical changes in offspring of rats fed diet containing alpha-cypermethrin”, Pestic. Biochem. Physiol., c. 142, ss. 133-140, Eki. 2017, doi: 10.1016/j.pestbp.2017.05.010.
  • A. Chaudhuri vd., “Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling”, Chemosphere, c. 248, s. 126037, Haz. 2020, doi: 10.1016/j.chemosphere.2020.126037.
  • D. E. Janner vd., “Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster”, Neurotoxicology, c. 85, ss. 79-89, Tem. 2021, doi: 10.1016/j.neuro.2021.05.006.
  • P. Grandjean ve P. J. Landrigan, “Neurobehavioural effects of developmental toxicity”, Lancet Neurol., c. 13, sy 3, ss. 330-338, Mar. 2014, doi: 10.1016/S1474-4422(13)70278-3.
  • A. Sarkar vd., “Role of cerium oxide nanoparticles in improving oxidative stress and developmental delays in Drosophila melanogaster as an in-vivo model for bisphenol a toxicity”, Chemosphere, c. 284, s. 131363, Ara. 2021, doi: 10.1016/j.chemosphere.2021.131363.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Zoology (Other)
Journal Section Research Articles
Authors

Serap Kocaoğlu Cenkci This is me 0000-0002-2863-1037

Selda Öz 0000-0003-1883-3441

Publication Date May 3, 2024
Submission Date March 7, 2024
Acceptance Date April 24, 2024
Published in Issue Year 2024

Cite

IEEE S. Kocaoğlu Cenkci and S. Öz, “Alfa-sipermetrin’in Davranışsal Toksisitesinin Drosophila melanogaster’de İncelenmesi”, Etoxec, vol. 4, no. 1, pp. 26–37, 2024, doi: 10.59838/etoxec.1448491.