Research Article
BibTex RIS Cite

Triklosanın Zebra Balığı (Danio rerio) İnce Bağırsağı Üzerinde Histopatolojik Etkileri

Year 2022, Volume: 2 Issue: 2, 98 - 106, 30.09.2022

Abstract

Bir bisfenol çeşidi olan triklosan, antibakteriyel sabun, deodorant, diş macunu, el kremi gibi kişisel bakım ürünlerinin yanı sıra kumaşlarda, oyuncak, diş fırçası sapı, mutfakta kullanılan plastikler gibi pek çok ürünün yapısında koruyucu, antiseptik, antimikrobiyal ve dezenfektan olarak kullanılmaktadır. Önemli biyositlerden ve çevresel kirleticilerden biri olan triklosan, yer altı suları aracılığı ile ekosisteme karışmakta ve sucul canlıların yaşamını tehdit etmektedir. Bu çalışma kapsamında triklosanın zebra balığı ince bağırsak dokularında yarattığı histopatolojik etkilerin incelenmesi amaçlanmıştır. Balıklara, 5 gün boyunca 34, 85 and 170 μg/L’lik triklosan uygulaması yapılmıştır. 5 günlük maruziyet süresinin sonunda ince bağırsak dokuları disekte edilmiştir. Dokular Bouin fiksatifi ile 24 saat boyunca fikse edilmiş, ardından rutin histolojik teknikler uygulanmıştır. Dokulardan mikrotom yardımı ile 5 µm kalınlığında kesitler alındıktan sonra Hematoksilen&Eozin boyaması yapılmıştır. Boyanan kesitler ışık mikroskobu altında değerlendirilerek histopatolojik değişimler gözlenmiştir. Kontrol grubunda normal ince bağırsak dokusu gözlenirken deney gruplarında villus yapısında dejenerasyon, villuslarda birleşme, inflamasyona bağlı olarak enterosit ve lenfosit sayısında artış, Goblet hücrelerinde hiperplazi ve muscularis externada kalınlaşma tespit edilmiştir.

References

  • [1] R. D. Jones, H. B. Jampani, J. L. Newman, A. S. Lee, “Triclosan: A review of effectiveness and safety in health care settings,” American Journal of Infection Control, vol 28, no 2, 184-196, 2000.
  • [2] A. B. Dann, A. Hontela, “Triclosan: environmental exposure, toxicity and mechanisms of action,” Journal of Applied Toxicology, vol 31, no 4, 285-311, 2011.
  • [3] A. D. Russell, “Whither triclosan?” Journal of Antimicrobial Chemotherapy, vol 53, no 5, 693–695, 2004.
  • [4] K. C. Ahn, B. Zhao, J. Chen, G. Cherednichenko, E. Sanmarti, M. S. Denison, B. Lasley, I. N. Pessah, D. Kültz, D. P. Y. Chang, S. J. Gee, B. D. Hammock, “In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens,” Environmental Health Perspectives, vol 116, no 9, 1203–1210, 2008.
  • [5] N. Veldhoen, R. C. Skirrow, H. Osachoff, H. Wigmore, D. J. Clapson, M. P. Gunderson, G. van Aggelen, C. C. Helbing, “The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development,” Aquatic Toxicology, vol 80, no 3,: 217–227, 2006.
  • [6] K. M. Crofton, K. B. Paul, M. J. De Vito, J. M. Hedge, “Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine,” Environmental Toxicology and Pharmacology, vol 24, no 2, 194–197, 2007.
  • [7] M. Allmyr, F. Harden, L. M. L. Toms, J. F. Mueller, M. S. McLachlan, M. Adolfsson-Erici, G. Sandborgh-Englund, “The influence of age and gender on triclosan concentrations in Australian human blood serum,” Science of the Total Environment, vol 393, no 1, 162–167, 2008.
  • [8] N. Tatarazako, H. Ishibashi, K. Teshima, K. Kishi, K. Arizono, “Effects of triclosan on various aquatic organisms,” Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, vol 11, no 2, 133-140, 2004.
  • [9] S. Chu, C. D. Metcalfe, “Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry,” Journal of Chromatography A, vol 1164, no 1-2, 212–218, 2007.
  • [10] T. E. A. Chalew, R. U. Halden, “Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban,” Journal of the American Water Resources Association, vol 45, no 1, 4–13, 2009.
  • [11] R. Reiss, G. Lewis, J. Griffin, An ecological risk assessment fro triclosan in the terrestrial environment. Environmental Toxicology and Chemistry, vol 28, no 7, 1546–1556, 2009.
  • [12] D. R. Orvos, D. J. Versteeg, J. Inauen, M. Capdevielle, A. Rothen-stein, V. Cunningham, “Aquatic toxicity of triclosan,” Environmental Toxicology and Chemistry, vol 21, no 7, 1338-1349, 2002.
  • [13] T. E. A. Chalew, R. U. Halden, “Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban,” Journal of the American Water Resources Association, vol 45, 4-13, 2009.
  • [14] N. Nakada, M. Yasojima, Y. Okayasu, K. Komori, Y. Suzuki, “Mass balance analysis of triclosan, diethyltoluamide, crota-miton and carbamazepine in sewage treatment plants,” Water Science and Technology, vol 61, 1739-1747, 2010.
  • [15] G. S. Dhillon, S. Kaur, R. Pulicharla, S. K. Brar, M. Cledón, M. Verma, R. Y. Surampalli, “Triclosan: current status, occurrence, environmental risks and bioaccumulation potential,” International Journal of Environmental Research and Public Health, vol 12, no 5, 5657-5684, 2015.
  • [16] R. Oliveira, I. Domingues, C. K. Grisolia, A. M. Soares, “Effects of triclosan on zebrafish early-life stages and adults,” Environmental Science and Pollution Research, vol 16, 679-688, 2009.
  • [17] F. E. Kayhan, H. E. Esmer Duruel, Ş. Kızılkaya, S. K. Dinç, G. Kaymak, C. Akbulut, N. D. Yön, “Toxic effects of herbicide tribenuron-methyl on liver tissue of zebrafish (Danio rerio),” Fresenius Environmental Bulletin, vol 29, 11175-11179, 2020.
  • [18] S. Arman, S. I. Ucuncu, “Impact of acute fonofos exposure on skeletal muscle of zebrafish: Histopathological and biometric analyses,” International Journal of Limnology, 57, vol 25, 2021.
  • [19] S. Arman, “Effects of acute triclosan exposure on gill and liver tissues of zebrafish (Danio rerio)” International Journal of Limnology, vol 57, no 6, 2021.
  • [20] C. Akbulut, “Histopathological and apoptotic examination of zebrafish (Danio rerio) gonads exposed to triclosan,” Archives of Biological Sciences, vol 73, no 4, 465-472, 2021.
  • [21] H. Ishibashi, N. Matsumura, M. Hirano, M. Matsuoka, H. Shirat-suchi, Y. Ishibashi, Y. Takao, K. Arizono, “Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin,” Aquatic Toxicology, vol 67,no 2, 167-179, 2004.
  • [22] S. A. Raut, R. A. Angus, “Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis,” Environmental Toxicology and Chemistry, vol 29, no 6, 1287-1291, 2010.
  • [23] E. S. Koeppe, K. K. Ferguson, J. A. Colacino, J. D. Meeker, “Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008,” Science of the Total Environment, vol 445-446, 299-305, 2013.
  • [24] C. F. Wang, Y. Tian, “Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms,” Environmental Pollution, vol 206, 195-201. 2015.
  • [25] G. W. Louis, D. R. Hallinger, M. J. Braxton, A. Kamel, T. E. Stoker, “Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat,” Journal of Toxicology and Environmental Health, Part A, vol 80, no 4, 236-249, 2017.
  • [26] C. Akbulut, “Acute Exposure to the Neonicotinoid Insecticide Imidacloprid of Zebrafish (Danio rerio) Gonads: A Histopathological Approach,” International Journal of Limnology, vol 57, 23. 2021.
  • [27] C. Akbulut, N. D. Yön Ertuğ, “Histopathological Evaluation of Zebrafish (Danio rerio) Intestinal Tissue After Imidacloprid Exposure,” Acta Aquatica Turcica, vol 16, no 3, 360-365, 2019.
  • [28] J. Zhang, M. E. Walker, K. Z. Sanidad,. H. Zhang, Y. Liang, E. Zhao, K. Chacon-Vargas, V. Yeliseyev, J. Parsonnet, T. D. Haggerty, G. Wang, J. B. Simpson, P. B. Jariwala, V. V. Beaty, J. Yang, H. Yang, A. Panigrahy, L. M. Minter, D. Kim, J. G. Gibbons, L. Liu, Z. Li, H. Xiao, V. Borlandelli, H. S. Overkleeft, E. W. Cloer, M. B. Major, D. Goldfarb, Z. Cai, M. R. Redinbo, G. Zhang, “Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract,” Nature Communications, vol 13, 136, 2022.
  • [29] I. Shirdel, M. R. Kalbassi, “Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius),” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol 183-184, 28-35, 2016.
  • [30] E. İ. Cengiz, E. Ünlü, K. Balcı, “The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis,” Journal of Environmental Science and Health, Part B, vol 36, no 1, 75-85, 2001.
  • [31] M. F. Vajargah, J. I. Namin, Mohsenpour R, A. M. Yalsuyi, M. D. Prokić, C. Faggio, “Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Veterinary Research Communications, 45, 373–380. 2021.

Effects of Triclosan on Zebrafish (Danio rerio) Intestinal Histopathology

Year 2022, Volume: 2 Issue: 2, 98 - 106, 30.09.2022

Abstract

Triclosan, a type of bisphenol, is used as a preservative, antiseptic, antimicrobial and disinfectant in the structure of many products such as antibacterial soap, deodorant, toothpaste, hand cream, as well as personal care products such as fabrics, toys, toothbrush handles, and plastics used in the kitchen. Triclosan, which is one of the important biocides and environmental pollutants, mixes with the ecosystem through groundwater and threatens the life of aquatic organisms. In this study, it was aimed to examine the histopathological effects of triclosan on zebrafish intetinal tissues. Fish were treated with 34, 85 and 170 μg/L triclosan for 5 days. At the end of the 5-days of exposure period, the intestinal tissues were dissected. Tissues were fixed with Bouin's fixative for 24 hours, followed by routine histological techniques. Hematoxylin & Eosin staining was performed after 5 µm thick sections were taken from the tissues with a microtome. Stained sections were evaluated under a light microscope and histopathological changes were observed. While normal intestinal tissue was observed in the control group, degeneration in the villus structure, fusion of the villi, an increase in the number of enterocytes and lymphocytes due to inflammation, hyperplasia in the goblet cells and thickening of the muscularis externa were detected in the experimental groups.

References

  • [1] R. D. Jones, H. B. Jampani, J. L. Newman, A. S. Lee, “Triclosan: A review of effectiveness and safety in health care settings,” American Journal of Infection Control, vol 28, no 2, 184-196, 2000.
  • [2] A. B. Dann, A. Hontela, “Triclosan: environmental exposure, toxicity and mechanisms of action,” Journal of Applied Toxicology, vol 31, no 4, 285-311, 2011.
  • [3] A. D. Russell, “Whither triclosan?” Journal of Antimicrobial Chemotherapy, vol 53, no 5, 693–695, 2004.
  • [4] K. C. Ahn, B. Zhao, J. Chen, G. Cherednichenko, E. Sanmarti, M. S. Denison, B. Lasley, I. N. Pessah, D. Kültz, D. P. Y. Chang, S. J. Gee, B. D. Hammock, “In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens,” Environmental Health Perspectives, vol 116, no 9, 1203–1210, 2008.
  • [5] N. Veldhoen, R. C. Skirrow, H. Osachoff, H. Wigmore, D. J. Clapson, M. P. Gunderson, G. van Aggelen, C. C. Helbing, “The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development,” Aquatic Toxicology, vol 80, no 3,: 217–227, 2006.
  • [6] K. M. Crofton, K. B. Paul, M. J. De Vito, J. M. Hedge, “Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine,” Environmental Toxicology and Pharmacology, vol 24, no 2, 194–197, 2007.
  • [7] M. Allmyr, F. Harden, L. M. L. Toms, J. F. Mueller, M. S. McLachlan, M. Adolfsson-Erici, G. Sandborgh-Englund, “The influence of age and gender on triclosan concentrations in Australian human blood serum,” Science of the Total Environment, vol 393, no 1, 162–167, 2008.
  • [8] N. Tatarazako, H. Ishibashi, K. Teshima, K. Kishi, K. Arizono, “Effects of triclosan on various aquatic organisms,” Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, vol 11, no 2, 133-140, 2004.
  • [9] S. Chu, C. D. Metcalfe, “Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry,” Journal of Chromatography A, vol 1164, no 1-2, 212–218, 2007.
  • [10] T. E. A. Chalew, R. U. Halden, “Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban,” Journal of the American Water Resources Association, vol 45, no 1, 4–13, 2009.
  • [11] R. Reiss, G. Lewis, J. Griffin, An ecological risk assessment fro triclosan in the terrestrial environment. Environmental Toxicology and Chemistry, vol 28, no 7, 1546–1556, 2009.
  • [12] D. R. Orvos, D. J. Versteeg, J. Inauen, M. Capdevielle, A. Rothen-stein, V. Cunningham, “Aquatic toxicity of triclosan,” Environmental Toxicology and Chemistry, vol 21, no 7, 1338-1349, 2002.
  • [13] T. E. A. Chalew, R. U. Halden, “Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban,” Journal of the American Water Resources Association, vol 45, 4-13, 2009.
  • [14] N. Nakada, M. Yasojima, Y. Okayasu, K. Komori, Y. Suzuki, “Mass balance analysis of triclosan, diethyltoluamide, crota-miton and carbamazepine in sewage treatment plants,” Water Science and Technology, vol 61, 1739-1747, 2010.
  • [15] G. S. Dhillon, S. Kaur, R. Pulicharla, S. K. Brar, M. Cledón, M. Verma, R. Y. Surampalli, “Triclosan: current status, occurrence, environmental risks and bioaccumulation potential,” International Journal of Environmental Research and Public Health, vol 12, no 5, 5657-5684, 2015.
  • [16] R. Oliveira, I. Domingues, C. K. Grisolia, A. M. Soares, “Effects of triclosan on zebrafish early-life stages and adults,” Environmental Science and Pollution Research, vol 16, 679-688, 2009.
  • [17] F. E. Kayhan, H. E. Esmer Duruel, Ş. Kızılkaya, S. K. Dinç, G. Kaymak, C. Akbulut, N. D. Yön, “Toxic effects of herbicide tribenuron-methyl on liver tissue of zebrafish (Danio rerio),” Fresenius Environmental Bulletin, vol 29, 11175-11179, 2020.
  • [18] S. Arman, S. I. Ucuncu, “Impact of acute fonofos exposure on skeletal muscle of zebrafish: Histopathological and biometric analyses,” International Journal of Limnology, 57, vol 25, 2021.
  • [19] S. Arman, “Effects of acute triclosan exposure on gill and liver tissues of zebrafish (Danio rerio)” International Journal of Limnology, vol 57, no 6, 2021.
  • [20] C. Akbulut, “Histopathological and apoptotic examination of zebrafish (Danio rerio) gonads exposed to triclosan,” Archives of Biological Sciences, vol 73, no 4, 465-472, 2021.
  • [21] H. Ishibashi, N. Matsumura, M. Hirano, M. Matsuoka, H. Shirat-suchi, Y. Ishibashi, Y. Takao, K. Arizono, “Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin,” Aquatic Toxicology, vol 67,no 2, 167-179, 2004.
  • [22] S. A. Raut, R. A. Angus, “Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis,” Environmental Toxicology and Chemistry, vol 29, no 6, 1287-1291, 2010.
  • [23] E. S. Koeppe, K. K. Ferguson, J. A. Colacino, J. D. Meeker, “Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008,” Science of the Total Environment, vol 445-446, 299-305, 2013.
  • [24] C. F. Wang, Y. Tian, “Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms,” Environmental Pollution, vol 206, 195-201. 2015.
  • [25] G. W. Louis, D. R. Hallinger, M. J. Braxton, A. Kamel, T. E. Stoker, “Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat,” Journal of Toxicology and Environmental Health, Part A, vol 80, no 4, 236-249, 2017.
  • [26] C. Akbulut, “Acute Exposure to the Neonicotinoid Insecticide Imidacloprid of Zebrafish (Danio rerio) Gonads: A Histopathological Approach,” International Journal of Limnology, vol 57, 23. 2021.
  • [27] C. Akbulut, N. D. Yön Ertuğ, “Histopathological Evaluation of Zebrafish (Danio rerio) Intestinal Tissue After Imidacloprid Exposure,” Acta Aquatica Turcica, vol 16, no 3, 360-365, 2019.
  • [28] J. Zhang, M. E. Walker, K. Z. Sanidad,. H. Zhang, Y. Liang, E. Zhao, K. Chacon-Vargas, V. Yeliseyev, J. Parsonnet, T. D. Haggerty, G. Wang, J. B. Simpson, P. B. Jariwala, V. V. Beaty, J. Yang, H. Yang, A. Panigrahy, L. M. Minter, D. Kim, J. G. Gibbons, L. Liu, Z. Li, H. Xiao, V. Borlandelli, H. S. Overkleeft, E. W. Cloer, M. B. Major, D. Goldfarb, Z. Cai, M. R. Redinbo, G. Zhang, “Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract,” Nature Communications, vol 13, 136, 2022.
  • [29] I. Shirdel, M. R. Kalbassi, “Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius),” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol 183-184, 28-35, 2016.
  • [30] E. İ. Cengiz, E. Ünlü, K. Balcı, “The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis,” Journal of Environmental Science and Health, Part B, vol 36, no 1, 75-85, 2001.
  • [31] M. F. Vajargah, J. I. Namin, Mohsenpour R, A. M. Yalsuyi, M. D. Prokić, C. Faggio, “Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Veterinary Research Communications, 45, 373–380. 2021.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Cansu Akbulut 0000-0003-4333-7669

Publication Date September 30, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

IEEE C. Akbulut, “Triklosanın Zebra Balığı (Danio rerio) İnce Bağırsağı Üzerinde Histopatolojik Etkileri”, Etoxec, vol. 2, no. 2, pp. 98–106, 2022.