Research Article
BibTex RIS Cite

ECOSAR Modeli Kullanılarak Fosetyl-Alüminyum’un Hesaplamalı Ekotoksikolojik Risk Değerlendirmesi

Year 2025, Volume: 5 Issue: 2, 64 - 71, 13.10.2025
https://doi.org/10.59838/etoxec.1791289

Abstract

Pestisit kullanımının artması, özellikle sucul ekosistemlerde ekolojik güvenlik endişelerini artırmıştır. Fosetyl-alüminyum (fosetyl-Al) sistemik bir fungisit olup hem fungal gelişimi baskılar hem de bitki savunma mekanizmalarını uyarır. Bu çalışmada, ECOSAR (Ekolojik Yapı–Aktivite İlişkisi) modeli kullanılarak fosetyl-Al’nin sucul ve karasal organizmalar üzerindeki akut ve kronik toksisitesi öngörülmüştür. Sonuçlar, “doygunlukta etki yok” bulgusunu sürekli olarak göstermiş ve gerçekçi maruziyet koşullarında düşük akut risk ortaya koymuştur. Deneysel verilerle de doğrulanan bu bulgular, fosetyl-Al’nin çevresel açıdan düşük riskli bir fungisit olduğunu ve ekotoksikolojik ön değerlendirmelerde hesaplamalı QSAR yaklaşımlarının önemini ortaya koymaktadır.

References

  • United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2019: Highlights (ST/ESA/SER.A/423), 2019.
  • Food and Agriculture Organization (FAO), World Food and Agriculture – Statistical Yearbook 2021, Rome: FAO, 2021.
  • A. Sharma, V. Kumar, B. Shahzad, M. Tanveer, G. P. S. Sidhu, N. Handa, and A. K. Thukral, “Worldwide pesticide usage and its impacts on ecosystem,” SN Appl. Sci., vol. 1, no. 11, pp. 1–16, 2019
  • H. Hof, “Fungicides and their modes of action: A review,” J. Plant Dis. Prot., vol. 128, no. 1, pp. 1–12, 2021.
  • T. Deliopoulos, P. S. Kettlewell, and M. C. Hare, “Fungicide resistance: a threat to the sustainability of agricultural systems?,” J. Agric. Sci., vol. 148, no. 1, pp. 1–3, 2010.
  • P. López-Rodríguez, P. Gómez, and M. González, “Efficacy of fungicides against Phytophthora infestans in tomato crops,” Crop Prot., vol. 127, p. 104961, 2020.
  • D. Jain and J. P. Khurana, “Role of pathogenesis-related (PR) proteins in plant defense mechanism,” in Molecular Aspects of Plant-Pathogen Interaction, A. Singh and I. K. Singh, Eds., Singapore: Springer, 2018, pp. 265–281.
  • P. Cabras, A. Angioni, V. L. Garau, M. Melis, F. M. Pirisi, and E. V. Minelli, “Fate of fosetyl-Al in grapes and wine,” J. Agric. Food Chem., vol. 47, no. 5, pp. 1949–1951, 1999.
  • X. Yao and L. Zhong, “Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid,” Mutat. Res., vol. 587, no. 1–2, pp. 38–44, 2005.
  • U.S. Environmental Protection Agency (EPA), Fosetyl-Al: Human Health Assessment Scoping Document in Support of Registration Review, EPA-HQ-OPP-2019-0001, 2020.
  • A. B. Raies and V. B. Bajic, “In silico toxicology: computational methods for the prediction of chemical toxicity,” Wiley Interdiscip. Rev.: Comput. Mol. Sci., vol. 6, no. 2, pp. 147–172, 2016.
  • V. Bastikar, A. Bastikar, and P. Gupta, “Quantitative structure–activity relationship-based computational approaches,” in Book Title, A. Parihar et al., Eds., pp. 191–205, 2022.
  • K. Khan and K. Roy, “Ecotoxicological QSAR modelling of organic chemicals against Pseudokirchneriella subcapitata using consensus predictions approach,” SAR QSAR Environ. Res., 2019.
  • G. J. Lavado, D. Baderna, E. Carnesecchi, A. P. Toropova, A. A. Toropov, J. L. C. M. Dorne, and E. Benfenati, “QSAR models for soil ecotoxicity,” J. Hazard. Mater., vol. 415, p. 127236, 2021.
  • G. Anandhi and M. Iyapparaja, “Systematic approaches to machine learning models for predicting pesticide toxicity,” Heliyon, vol. 10, no. 7, p. e28752, 2024.
  • C. J. van Leeuwen and T. G. Vermeire, Risk Assessment of Chemicals: An Introduction, Springer, 2007.
  • European Chemicals Agency (ECHA), Guidance on the Application of QSARs in the REACH Context, 2016.
  • University of Hertfordshire, Pesticide Properties Database: Fosetyl-aluminium, 2022.
  • A. Sanchez et al., study on fosetyl-Al in Cyprinus carpio, 2005.
  • European Food Safety Authority (EFSA), “Conclusion regarding the peer review of the pesticide risk assessment of the active substance fosetyl,” EFSA J., vol. 4, no. 7, p. 85r, 2006.
  • N. Dittbrenner, H. Schmitt, Y. Capowiez, and R. Triebskorn, “Sensitivity of Eisenia fetida,” J. Soils Sediments, vol. 11, no. 6, pp. 1000–1010, 2011.
  • U.S. Environmental Protection Agency (EPA), Ecological Risk Assessment for Pesticides: Technical Overview, 2015.
  • M. T. Cronin, D. J. Livingstone, and J. D. Walker, “QSARs for predicting potential ecological hazard of organic chemicals,” ACS Publications, 2003.
  • P. Calow, Handbook of Environmental Risk Assessment and Management, Wiley, 2009.
  • W. M. S. Russell and R. L. Burch, The Principles of Humane Experimental Technique, Methuen, 1959.

In Silico Ecotoxicological Risk Assessment of Fosetyl-Aluminium Using the ECOSAR Model

Year 2025, Volume: 5 Issue: 2, 64 - 71, 13.10.2025
https://doi.org/10.59838/etoxec.1791289

Abstract

The increasing use of pesticides has raised global concerns about their ecological safety, especially in aquatic systems. Fosetyl-aluminium (fosetyl-Al), a systemic fungicide, acts by inhibiting fungal growth and stimulating plant defense. In this study, the Ecological Structure–Activity Relationship (ECOSAR) model was applied to predict its acute and chronic toxicity towards aquatic and terrestrial organisms. Results consistently indicated “no effects at saturation,” suggesting minimal acute risk under realistic exposure. These findings, corroborated by experimental data, highlight fosetyl-Al as an environmentally low-risk fungicide and demonstrate the value of QSAR-based in silico approaches in preliminary ecological risk assessment.

References

  • United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2019: Highlights (ST/ESA/SER.A/423), 2019.
  • Food and Agriculture Organization (FAO), World Food and Agriculture – Statistical Yearbook 2021, Rome: FAO, 2021.
  • A. Sharma, V. Kumar, B. Shahzad, M. Tanveer, G. P. S. Sidhu, N. Handa, and A. K. Thukral, “Worldwide pesticide usage and its impacts on ecosystem,” SN Appl. Sci., vol. 1, no. 11, pp. 1–16, 2019
  • H. Hof, “Fungicides and their modes of action: A review,” J. Plant Dis. Prot., vol. 128, no. 1, pp. 1–12, 2021.
  • T. Deliopoulos, P. S. Kettlewell, and M. C. Hare, “Fungicide resistance: a threat to the sustainability of agricultural systems?,” J. Agric. Sci., vol. 148, no. 1, pp. 1–3, 2010.
  • P. López-Rodríguez, P. Gómez, and M. González, “Efficacy of fungicides against Phytophthora infestans in tomato crops,” Crop Prot., vol. 127, p. 104961, 2020.
  • D. Jain and J. P. Khurana, “Role of pathogenesis-related (PR) proteins in plant defense mechanism,” in Molecular Aspects of Plant-Pathogen Interaction, A. Singh and I. K. Singh, Eds., Singapore: Springer, 2018, pp. 265–281.
  • P. Cabras, A. Angioni, V. L. Garau, M. Melis, F. M. Pirisi, and E. V. Minelli, “Fate of fosetyl-Al in grapes and wine,” J. Agric. Food Chem., vol. 47, no. 5, pp. 1949–1951, 1999.
  • X. Yao and L. Zhong, “Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid,” Mutat. Res., vol. 587, no. 1–2, pp. 38–44, 2005.
  • U.S. Environmental Protection Agency (EPA), Fosetyl-Al: Human Health Assessment Scoping Document in Support of Registration Review, EPA-HQ-OPP-2019-0001, 2020.
  • A. B. Raies and V. B. Bajic, “In silico toxicology: computational methods for the prediction of chemical toxicity,” Wiley Interdiscip. Rev.: Comput. Mol. Sci., vol. 6, no. 2, pp. 147–172, 2016.
  • V. Bastikar, A. Bastikar, and P. Gupta, “Quantitative structure–activity relationship-based computational approaches,” in Book Title, A. Parihar et al., Eds., pp. 191–205, 2022.
  • K. Khan and K. Roy, “Ecotoxicological QSAR modelling of organic chemicals against Pseudokirchneriella subcapitata using consensus predictions approach,” SAR QSAR Environ. Res., 2019.
  • G. J. Lavado, D. Baderna, E. Carnesecchi, A. P. Toropova, A. A. Toropov, J. L. C. M. Dorne, and E. Benfenati, “QSAR models for soil ecotoxicity,” J. Hazard. Mater., vol. 415, p. 127236, 2021.
  • G. Anandhi and M. Iyapparaja, “Systematic approaches to machine learning models for predicting pesticide toxicity,” Heliyon, vol. 10, no. 7, p. e28752, 2024.
  • C. J. van Leeuwen and T. G. Vermeire, Risk Assessment of Chemicals: An Introduction, Springer, 2007.
  • European Chemicals Agency (ECHA), Guidance on the Application of QSARs in the REACH Context, 2016.
  • University of Hertfordshire, Pesticide Properties Database: Fosetyl-aluminium, 2022.
  • A. Sanchez et al., study on fosetyl-Al in Cyprinus carpio, 2005.
  • European Food Safety Authority (EFSA), “Conclusion regarding the peer review of the pesticide risk assessment of the active substance fosetyl,” EFSA J., vol. 4, no. 7, p. 85r, 2006.
  • N. Dittbrenner, H. Schmitt, Y. Capowiez, and R. Triebskorn, “Sensitivity of Eisenia fetida,” J. Soils Sediments, vol. 11, no. 6, pp. 1000–1010, 2011.
  • U.S. Environmental Protection Agency (EPA), Ecological Risk Assessment for Pesticides: Technical Overview, 2015.
  • M. T. Cronin, D. J. Livingstone, and J. D. Walker, “QSARs for predicting potential ecological hazard of organic chemicals,” ACS Publications, 2003.
  • P. Calow, Handbook of Environmental Risk Assessment and Management, Wiley, 2009.
  • W. M. S. Russell and R. L. Burch, The Principles of Humane Experimental Technique, Methuen, 1959.
There are 25 citations in total.

Details

Primary Language English
Subjects Ecotoxicology
Journal Section Research Articles
Authors

Murat Ömeroğlu 0009-0005-0528-4510

Sinem Öztürk 0009-0007-3458-4912

Publication Date October 13, 2025
Submission Date September 26, 2025
Acceptance Date October 7, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

IEEE M. Ömeroğlu and S. Öztürk, “In Silico Ecotoxicological Risk Assessment of Fosetyl-Aluminium Using the ECOSAR Model”, Etoxec, vol. 5, no. 2, pp. 64–71, 2025, doi: 10.59838/etoxec.1791289.