Research Article
BibTex RIS Cite

Tonsil mesenchymal stem cells-derived exosomes differentially effect the cell proliferation depending on different temperature conditions

Year 2024, Volume: 10 Issue: 5, 501 - 512
https://doi.org/10.18621/eurj.1527408

Abstract

Objectives: Exosomes are suggested as cellular components with therapeutic and prognostic potential in various disease therapies and exhibit different secretion profiles under cellular stress. Mesenchymal stem cells (MSCs), which play an important role in regenerative medicine, are particularly rich in exosome release compared to other cell types. In this context, the effect of exosomes obtained from palatine tonsil tissue derived MSCs (T-MSC) under different temperature conditions on cell proliferation were investigated in vitro on cancer and healthy cells.

Methods: Exosomes were isolated from MSCs under normal temperature conditions and heat stress, and their concentrations and size distribution were determined by nanoparticle tracking analysis. The effects of exosomes obtained under different conditions on cell proliferation in healthy and cancer cell lines were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while their effects on cell migration were evaluated by wound healing assay.

Results: Exosomes obtained under normal temperature conditions and heat stress did not exhibit very different properties in terms of size distribution, but particles were obtained at approximately 2 times higher concentrations under normal temperature conditions. They showed different effects in terms of cell proliferation. Exosomes obtained under normal conditions significantly increased cell proliferation in keratinocyte cells depending on the concentration. However, exosomes obtained in cancer cells, especially after heat stress, significantly inhibited cell proliferation.

Conclusions: While exosomes obtained under heat stress come to the forefront in inhibiting cell proliferation in cancer cells, exosomes obtained under normal conditions stand out as effective in wound healing by stimulating increased normal cell proliferation.

Ethical Statement

Ondokuz Mayıs University, Clinical Research Ethics Committee (Ethics committee number: OMÜ KAEK 2022/282; 2023/120)

Supporting Institution

This work was supported by the scientific and technological research council of Turkey (TUBİTAK) under 2209-A Research Project Support Programme

Project Number

TUBİTAK 2209-A, Project number; 1919B012112778 and 1919B012217125

References

  • 1. Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35(4):851-858. doi: 10.1002/stem.2575.
  • 2. Kahraman T, Güçlüler G, Gürsel İ. [Exosomes: Natural nanovesicle candidates used in the diagnosis and treatment]. Turk J Immunol. 2014;2(2):34-40. doi: 10.5606/tji.2014.323. [Article in Turkish]
  • 3. Aygan B, Kaya M, Mutlu EC, Küçük İ. [The Role of Exosomes in Diseases and Their Use for Diagnosis and Therapeutic Purpose]. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2021;14(1):15-26. doi: 10.20854/bujse.874609. [Article in Turkish]
  • 4. Willms E, Cabanas C, Mager I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: 10.3389/fimmu.2018.00738.
  • 5. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant. 2012;27(8):3037-3042. doi: 10.1093/ndt/gfs168.
  • 6. Saravanan PB, Vasu S, Yoshimatsu G, et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia. 2019;62(10):1901-1914. doi: 10.1007/s00125-019-4950-x.
  • 7. de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1. doi: 10.3402/jev.v1i0.18396.
  • 8. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005;280(24):23349-23355. doi: 10.1074/jbc.M502017200.
  • 9. Zagar TM, Oleson JR, Vujaskovic Z, et al. Hyperthermia for locally advanced breast cancer. Int J Hyperthermia. 2010;26(7):618-624. doi: 10.3109/02656736.2010.501051.
  • 10. Reiner AT, Somoza V. Extracellular Vesicles as Vehicles for the Delivery of Food Bioactives. J Agric Food Chem. 2019;67(8):2113-2119. doi: 10.1021/acs.jafc.8b06369.
  • 11. İnanır C, Ekici L. [Exosomes: Their Composition, Biological Functions and Potential for Transport of Bioactive Compounds]. Akademik Gıda. 2020;18(4):421-432. doi: 10.24323/akademik-gida.850939. [Article in Turkish]
  • 12. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8(8):784. doi: 10.3390/cells8080784.
  • 13. Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624.
  • 14. Han C, Sun X, Liu L, et al. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int. 2016;2016:7653489. doi: 10.1155/2016/7653489.
  • 15. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214-222. doi: 10.1016/j.scr.2009.12.003.
  • 16. Bruno S, Grange C, Collino F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 2012;7(3):e33115. doi: 10.1371/journal.pone.0033115.
  • 17. Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010;14(6B):1605-1618. doi: 10.1111/j.1582-4934.2009.00860.x.
  • 18. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387-397. doi: 10.1007/s00109-013-1110-5.
  • 19. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience. 2016;320:129-139. doi: 10.1016/j.neuroscience.2016.01.061.
  • 20. Shin SC, Seo Y, Park HY, et al. Regenerative potential of tonsil mesenchymal stem cells on surgical cutaneous defect. Cell Death Dis. 2018;9(2):183. doi: 10.1038/s41419-017-0248-4.
  • 21. Park GC, Song JS, Park HY, et al. Role of Fibroblast Growth Factor-5 on the Proliferation of Human Tonsil-Derived Mesenchymal Stem Cells. Stem Cells Dev. 2016;25(15):1149-1160. doi: 10.1089/scd.2016.0061.
  • 22. Fathi E, Farahzadi R, Valipour B, Sanaat Z. Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation. PLoS One. 2019;14(4):e0215678. doi: 10.1371/journal.pone.0215678.
  • 23. Kim G, Jin YM, Yu Y, et al. Double intratibial injection of human tonsil-derived mesenchymal stromal cells recovers postmenopausal osteoporotic bone mass. Cytotherapy. 2018;20(8):1013-1027. doi: 10.1016/j.jcyt.2018.06.008.
  • 24. Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology. 2018;70(2):729-739. doi: 10.1007/s10616-017-0177-1.
  • 25. Choi JS, Lee BJ, Park HY, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36(1):85-99. doi: 10.1159/000374055.
  • 26. Kırbaş OK, Bozkurt BT, Asutay AB, et al. Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Sci Rep. 2019;9(1):19159. doi: 10.1038/s41598-019-55477-0.
  • 27. Gupta S, Rawat S, Arora V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):180. doi: 10.1186/s13287-018-0923-0.
  • 28. Zhou Y, Zhou W, Chen X, et al. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B. 2020;10(8):1563-1575. doi: 10.1016/j.apsb.2019.11.013.
  • 29. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev. 2015;24(14):1635-1647. doi: 10.1089/scd.2014.0316.
  • 30. Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, et al. Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2015;6(1):32. doi: 10.1186/s13287-015-0013-5.
  • 31. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):98. doi: 10.1186/s13287-019-1204-2.
  • 32. Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14(11):e0225472. doi: 10.1371/journal.pone.0225472.
  • 33. Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci. 2022;23(18):10972. doi: 10.3390/ijms231810972.
  • 34. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465.
  • 35. ElBadre HM, El-Deek SEM, Ramadan HK, et al. Potential role of human umbilical cord stem cells-derived exosomes as novel molecular inhibitors of hepatocellular carcinoma growth. Apoptosis. 2023;28(9-10):1346-1356. doi: 10.1007/s10495-023-01863-z.
  • 36. Du L, Tao X, Shen X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer. 2021;28(4):829-837. doi: 10.1007/s12282-021-01218-z.
  • 37. Rezaeian A, Khatami F, Heidari Keshel S, et al. The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines. Sci Rep. 2022;12(1):20924. doi: 10.1038/s41598-022-23204-x.
  • 38. Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28-37. doi: 10.1016/j.canlet.2011.10.002.
  • 39. Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(5):4734-4745. doi: 10.1002/jcp.29351.
  • 40. Hoang DH, Nguyen TD, Nguyen HP, et al. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol Biosci. 2020;7:119. doi: 10.3389/fmolb.2020.00119.
  • 41. Tutuianu R, Rosca AM, Iacomi DM, Simionescu M, Titorencu I. Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci. 2021;22(12):6239. doi: 10.3390/ijms22126239.
  • 42. Guo D, Chen Y, Wang S, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology. 2018;154(1):132-143. doi: 10.1111/imm.12874.
  • 43. Kovalchin JT, Wang R, Wagh MS, Azoulay J, Sanders M, Chandawarkar RY. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. 2006;14(2):129-137. doi: 10.1111/j.1743-6109.2006.00102.x.
  • 44. Öncel M. [Heat Shock Proteins and Cancer]. Eur J Basic Med Sci. 2012;2(1):16-23. [Article in Turkish]
  • 45. Xu D, Tang WJ, Zhu YZ, et al. Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer. Int J Hyperthermia. 2022;39(1):246-257. doi: 10.1080/02656736.2022.2029585.
Year 2024, Volume: 10 Issue: 5, 501 - 512
https://doi.org/10.18621/eurj.1527408

Abstract

Project Number

TUBİTAK 2209-A, Project number; 1919B012112778 and 1919B012217125

References

  • 1. Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35(4):851-858. doi: 10.1002/stem.2575.
  • 2. Kahraman T, Güçlüler G, Gürsel İ. [Exosomes: Natural nanovesicle candidates used in the diagnosis and treatment]. Turk J Immunol. 2014;2(2):34-40. doi: 10.5606/tji.2014.323. [Article in Turkish]
  • 3. Aygan B, Kaya M, Mutlu EC, Küçük İ. [The Role of Exosomes in Diseases and Their Use for Diagnosis and Therapeutic Purpose]. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2021;14(1):15-26. doi: 10.20854/bujse.874609. [Article in Turkish]
  • 4. Willms E, Cabanas C, Mager I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: 10.3389/fimmu.2018.00738.
  • 5. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant. 2012;27(8):3037-3042. doi: 10.1093/ndt/gfs168.
  • 6. Saravanan PB, Vasu S, Yoshimatsu G, et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia. 2019;62(10):1901-1914. doi: 10.1007/s00125-019-4950-x.
  • 7. de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1. doi: 10.3402/jev.v1i0.18396.
  • 8. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005;280(24):23349-23355. doi: 10.1074/jbc.M502017200.
  • 9. Zagar TM, Oleson JR, Vujaskovic Z, et al. Hyperthermia for locally advanced breast cancer. Int J Hyperthermia. 2010;26(7):618-624. doi: 10.3109/02656736.2010.501051.
  • 10. Reiner AT, Somoza V. Extracellular Vesicles as Vehicles for the Delivery of Food Bioactives. J Agric Food Chem. 2019;67(8):2113-2119. doi: 10.1021/acs.jafc.8b06369.
  • 11. İnanır C, Ekici L. [Exosomes: Their Composition, Biological Functions and Potential for Transport of Bioactive Compounds]. Akademik Gıda. 2020;18(4):421-432. doi: 10.24323/akademik-gida.850939. [Article in Turkish]
  • 12. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8(8):784. doi: 10.3390/cells8080784.
  • 13. Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624.
  • 14. Han C, Sun X, Liu L, et al. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int. 2016;2016:7653489. doi: 10.1155/2016/7653489.
  • 15. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214-222. doi: 10.1016/j.scr.2009.12.003.
  • 16. Bruno S, Grange C, Collino F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 2012;7(3):e33115. doi: 10.1371/journal.pone.0033115.
  • 17. Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010;14(6B):1605-1618. doi: 10.1111/j.1582-4934.2009.00860.x.
  • 18. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387-397. doi: 10.1007/s00109-013-1110-5.
  • 19. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience. 2016;320:129-139. doi: 10.1016/j.neuroscience.2016.01.061.
  • 20. Shin SC, Seo Y, Park HY, et al. Regenerative potential of tonsil mesenchymal stem cells on surgical cutaneous defect. Cell Death Dis. 2018;9(2):183. doi: 10.1038/s41419-017-0248-4.
  • 21. Park GC, Song JS, Park HY, et al. Role of Fibroblast Growth Factor-5 on the Proliferation of Human Tonsil-Derived Mesenchymal Stem Cells. Stem Cells Dev. 2016;25(15):1149-1160. doi: 10.1089/scd.2016.0061.
  • 22. Fathi E, Farahzadi R, Valipour B, Sanaat Z. Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation. PLoS One. 2019;14(4):e0215678. doi: 10.1371/journal.pone.0215678.
  • 23. Kim G, Jin YM, Yu Y, et al. Double intratibial injection of human tonsil-derived mesenchymal stromal cells recovers postmenopausal osteoporotic bone mass. Cytotherapy. 2018;20(8):1013-1027. doi: 10.1016/j.jcyt.2018.06.008.
  • 24. Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology. 2018;70(2):729-739. doi: 10.1007/s10616-017-0177-1.
  • 25. Choi JS, Lee BJ, Park HY, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36(1):85-99. doi: 10.1159/000374055.
  • 26. Kırbaş OK, Bozkurt BT, Asutay AB, et al. Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Sci Rep. 2019;9(1):19159. doi: 10.1038/s41598-019-55477-0.
  • 27. Gupta S, Rawat S, Arora V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):180. doi: 10.1186/s13287-018-0923-0.
  • 28. Zhou Y, Zhou W, Chen X, et al. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B. 2020;10(8):1563-1575. doi: 10.1016/j.apsb.2019.11.013.
  • 29. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev. 2015;24(14):1635-1647. doi: 10.1089/scd.2014.0316.
  • 30. Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, et al. Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2015;6(1):32. doi: 10.1186/s13287-015-0013-5.
  • 31. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):98. doi: 10.1186/s13287-019-1204-2.
  • 32. Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14(11):e0225472. doi: 10.1371/journal.pone.0225472.
  • 33. Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci. 2022;23(18):10972. doi: 10.3390/ijms231810972.
  • 34. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465.
  • 35. ElBadre HM, El-Deek SEM, Ramadan HK, et al. Potential role of human umbilical cord stem cells-derived exosomes as novel molecular inhibitors of hepatocellular carcinoma growth. Apoptosis. 2023;28(9-10):1346-1356. doi: 10.1007/s10495-023-01863-z.
  • 36. Du L, Tao X, Shen X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer. 2021;28(4):829-837. doi: 10.1007/s12282-021-01218-z.
  • 37. Rezaeian A, Khatami F, Heidari Keshel S, et al. The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines. Sci Rep. 2022;12(1):20924. doi: 10.1038/s41598-022-23204-x.
  • 38. Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28-37. doi: 10.1016/j.canlet.2011.10.002.
  • 39. Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(5):4734-4745. doi: 10.1002/jcp.29351.
  • 40. Hoang DH, Nguyen TD, Nguyen HP, et al. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol Biosci. 2020;7:119. doi: 10.3389/fmolb.2020.00119.
  • 41. Tutuianu R, Rosca AM, Iacomi DM, Simionescu M, Titorencu I. Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci. 2021;22(12):6239. doi: 10.3390/ijms22126239.
  • 42. Guo D, Chen Y, Wang S, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology. 2018;154(1):132-143. doi: 10.1111/imm.12874.
  • 43. Kovalchin JT, Wang R, Wagh MS, Azoulay J, Sanders M, Chandawarkar RY. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. 2006;14(2):129-137. doi: 10.1111/j.1743-6109.2006.00102.x.
  • 44. Öncel M. [Heat Shock Proteins and Cancer]. Eur J Basic Med Sci. 2012;2(1):16-23. [Article in Turkish]
  • 45. Xu D, Tang WJ, Zhu YZ, et al. Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer. Int J Hyperthermia. 2022;39(1):246-257. doi: 10.1080/02656736.2022.2029585.
There are 45 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Original Articles
Authors

Melek Yüce 0000-0002-3791-838X

İlayda Şişli 0009-0009-8918-7839

Ezgi Çiftcioğlu 0000-0002-1494-8527

Esra Albayrak 0000-0002-9114-6253

Oğuz Kaan Kırbaş 0000-0002-7510-474X

Pakize Neslihan Taşlı 0000-0002-0455-9894

Doğukan Özdemir 0000-0003-2008-163X

Fikrettin Şahin 0000-0002-7208-8967

Project Number TUBİTAK 2209-A, Project number; 1919B012112778 and 1919B012217125
Early Pub Date August 25, 2024
Publication Date
Submission Date August 8, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2024 Volume: 10 Issue: 5

Cite

AMA Yüce M, Şişli İ, Çiftcioğlu E, Albayrak E, Kırbaş OK, Taşlı PN, Özdemir D, Şahin F. Tonsil mesenchymal stem cells-derived exosomes differentially effect the cell proliferation depending on different temperature conditions. Eur Res J. 10(5):501-512. doi:10.18621/eurj.1527408

e-ISSN: 2149-3189 


The European Research Journal, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

by-nc-nd.png

2024