Review
BibTex RIS Cite

Antibody-depent Immunopathology, Monoclonal Antibodies and Mutations in COVID-19

Year 2020, , 112 - 118, 26.08.2020
https://doi.org/10.26650/experimed.2020.0010

Abstract

The Coronavirus disease 19 (COVID-19) pandemic which is the etiological agent of a severe acute respiratory syndrome-associated coronavirus (SARS-CoV-2) has influenced the whole world with the current and possible results. In order to intervene on COVID-19 and to prevent the SARS-CoV-2 infection, a vaccine design and identification of potential therapeutics and/or targets are a priority. The humoral immune responses to viral infections have critical importance for the clearance of pathogens and also to protect from reinfections. However, particularly low affinity antibodies can cause an immune pathology known as antibody-dependent enhancement (ADE). ADE can cause important adversity especially for vaccine designs. Human monoclonal antibody with neutralizing activity is an alternative option in the treatment of the SARS-CoV-2 infection. So, research is ongoing to identify therapeutic monoclonal antibodies in the treatment of the SARS-CoV-2 infection. Identification and understanding of the dynamics of viral mutations is of critical importance to the course and control of the outbreak. Due to the lack of error correction activity of RNA virus polymerases, similar to other RNA viruses of SARS-CoV-2 is expected to have higher mutation rates than DNA viruses. For all the direction and effects of viral mutations occurring during the pandemic are difficult to predict. This review aimed to examine scientific data about ADE, monoclonal antibodies and the possible effects of mutations on the course of the COVID-19 pandemic.

References

  • 1. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016; 29;3(1): 237-26. [CrossRef]
  • 2. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116. [CrossRef]
  • 3. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch B-J, Rey FA, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 2017; 114: 11157-62. [CrossRef]
  • 4. Du L, He Y, Zhou Y, Liu, Zheng B-J, Jiang S. The spike protein of SARS- CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7: 226-36. [CrossRef]
  • 5. Yasui F, Kohara M, Kitabatake M, Nishiwaki T, Fujii H, Tateno C, et al. Phagocytic cells contribute to the antibody- mediated elimination of pulmonary- infected SARS coronavirus. Virology 2014; 454:157-68. [CrossRef]
  • 6. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020; 20: 339-41. [CrossRef]
  • 7. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS- CoV-2. Nature Review Immunology 2020; 20: 393-5. [CrossRef]
  • 8. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa344. [CrossRef]
  • 9. Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361: 1767v72. [CrossRef]
  • 10. Ho M-S, Wei-Ju C, Chen H-Y, Lin S-F, Wang M-C, Di J, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005; 11: 1730-7. [CrossRef]
  • 11. Robinson WEJr, Montefiori DC, Mitchell WM. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet 1988; 8589: 790-4. [CrossRef]
  • 12. Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. Antibody-dependent enhancement of Ebola virus infection. J Virol 2003; 77: 753944. [CrossRef]
  • 13. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet 2019; 393: 350-63. [CrossRef]
  • 14. Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977; 146: 201-17. [CrossRef]
  • 15. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med 2018; 379(4): 327-40. [CrossRef]
  • 16. Kliks SC, Nimmanitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 1988; 38: 411-4119. [CrossRef]
  • 17. Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis 1981; 4: 175-89. [CrossRef]
  • 18. Talbot HK, Shepherd BE, Crowe Jr JE, Griffin MR, Edwards KM, Podsiad AM, et al. The pediatric burden of human coronaviruses evaluated for twenty years. Pediatr Infect Dis J 2009; 28(8): 682-7. [CrossRef]
  • 19. Wang S-F, Tseng S-P, Yen C-H, Yang J-Y, Tsao C-H, Shen C-W, et al. Antibody- dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys.Res. Commun 2014; 451: 208-14. [CrossRef]
  • 20. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, et al. Anti- severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease- independent FcγR pathway. J Virol 2011; 85: 10582-97. [CrossRef]
  • 21. Yip MS, Leung HL, Li PH, Cheung CY, Dutry I, Li D, et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med J 2016; 22: 25-31.
  • 22. Yasui F, Kai H, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS- CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 2008; 181: 6337-48. [CrossRef]
  • 23. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4(4): e123158. [CrossRef]
  • 24. Wang, Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non- human primates. ACS Infect Dis 2016;2:361-76. [CrossRef]
  • 25. WanY, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Journal of Virology 2020; 94: e02015-19. [CrossRef]
  • 26. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double- inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011; 85: 12201-15. [CrossRef]
  • 27. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired- fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 2012; 18: 1820-6. [CrossRef]
  • 28. Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C. A perspective on potential antibodydependent enhancement of SARS-CoV-2. Nature 2020; doi.org/10.1038/ s41586-020-2538-8. [CrossRef]
  • 29. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, He X, et al. Viral kinetics and antibody responses in patients with COVID-19. Preprint at medRxiv 2020; https://doi.org/10.1101/2020.03.24.20042382. [CrossRef]
  • 30. Jiang H-w, Li Y, Zhang H-n, Wang W, Men D, Yang X, et al. Global profiling of SARS-CoV-2 specific IgG/IgM responses of convalescents using a proteome microarray. Preprint at medRxiv 2020;https://doi.org/10.1101/2020.03.20.20039495. [CrossRef]
  • 31. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Preprint at medRxiv 2020; doi.org/1 0.1101/2020.03.30.20047365. [CrossRef]
  • 32. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016; 351: 1339-42. [CrossRef]
  • 33. Levine MM. Monoclonal Antibody Therapy for Ebola Virus Disease. N Engl J Med 2019; 38: 2365-6. [CrossRef]
  • 34. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to maka human monoclonal antibodies from Emory B cells: patent neutralization of SARS coronavirus. Nat Med 2004;10: 87-5. [CrossRef]
  • 35. Rockx B, Donaldson E, Frieman M, Sheahan T, Corti D, Lanzavecchia A, et al. Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. J Infect Dis 2010; 20: 946-55. [CrossRef]
  • 36. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Veesler D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 2019; 26: 481-9. [CrossRef]
  • 37. ZhouP, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et. al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-3. [CrossRef]
  • 38. Meng Y, Nicholas C.W, Xueyong Z, Chang-Chun DL, Ray TYS, Huibin L, Chris KPM, Ian AW. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368: 630-3. [CrossRef]
  • 39. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et. al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-3. [CrossRef]
  • 40. ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CS, Cox F. Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants. PLOS Med 2006; 3: e237. [CrossRef]
  • 41. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: An immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013; 41: 34-40. [CrossRef]
  • 42. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, et al. patent binding of 2019 novel coronavirus spike protein by a SARS coronavirusspecific human monoclonal antibody. Emerg. Microbes Infect 2020; 9: 382-5. [CrossRef]
  • 43. Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, McLellan JS, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. bioRxiv 2020. [CrossRef]
  • 44. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, et al. Structural and functional analysis of a patent sarbecovirus neutralizing antibody. bioRxiv 2020. [CrossRef] 45. Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020; doi.org/10.1038/s41586-020-2548-6. [CrossRef]
  • 46. Grubaugh ND, Petrone ME, Holmes EC. We shouldn't worry when a virus mutates during disease outbreaks. Nature 2020; 5: 529-30. [CrossRef]
  • 47. The Chinese SARS Molecular Epidemiology Consortium. Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China. Science 2004; 303: 1666-9. [CrossRef]
  • 48. Zhu Y, Liu M, Zhao W, Zhang J, Zhang X, Wang K, et al. Isolation of virus from a SARS patient and genome-wide analysis of genetic mutations related to pathogenesis and epidemiology from 47 SARS-CoV isolates. Virus Genes 2005; 30(1): 93-102. [CrossRef]
  • 49. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 2020; doi:/10.1101/2020.04.29.069054. [CrossRef]
  • 50. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020; doi.org/10.1016/j.cell. [CrossRef]
  • 51. Polack FP. Atypical Measles and Enhanced Respiratory Syncytial Virus Disease (ERD) Made Simple. Pediatr Res 2007; 62(1): 111-5. [CrossRef]
  • 52. Sokolowska M, Lukasik Z, Agache I, Akdis CA, Akdis D, Akdis M, et al. Immunology of COVID‐19: mechanisms, clinical outcome, diagnostics and perspectives - a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; doi: 10.1111/all.14462. [CrossRef]

COVID-19’da Antikor Bağımlı İmmünpataloji, Monoklonal Antikorlar ve Mutasyonlar

Year 2020, , 112 - 118, 26.08.2020
https://doi.org/10.26650/experimed.2020.0010

Abstract

Şiddetli akut solunum sendromu ilişkili bir koronavirusun (SARSCoV-2) etiyolojik etken olduğu koronavirus 19 hastalığı (COVID-19) pandemisi mevcut ve olası sonuçları ile tüm dünyayı etkisi altına almıştır. COVID-19 ile mücadelede ve SARS-CoV-2 enfeksiyonun önlenmesinde aşı dizaynı ve potansiyel terapötiklerin veya hedeflerin belirlenmesi önceliklidir. Viral enfeksiyonlara karşı oluşan hümoral immun yanıt patojenlerin temizlenmesi ve yeniden bulaşmadan korunmak icin kritik öneme sahiptir. Buna karşın özellikle düşük afiniteli antikorlar, antikor bağımlı alevlenme (ADE) olarak bilinen immün patolojilere neden olabilirler. ADE özellikle aşı tasarımı için önemli sıkıntılara neden olabilir. Nötralizan etkinliğe sahip insan monoklonal antikorları SARS-CoV-2 enfeksiyonunun tedavisinde alternatif bir seçenek oluşturmaktadır. Dolayısıyla SARS-CoV-2 enfeksiyonunun tedavisindeki terapotik monoklonal antikorları tanımlamaya yönelik araştırmalar halen devam etmektedir. Viral mutasyonların tanımlanması ve dinamiğinin anlaşılması salgının seyri ve kontrolü için kritik öneme sahiptir. RNA virüslerinin polimeraz enzimlerinin hata düzeltme aktivitesinin eksik olması nedeniyle SARS-CoV-2’nin de diğer RNA virüslerine benzer olarak mutasyon oranlarının DNA virüslerine göre daha yüksek olması beklenir. Buna karşın pandemi sürecinde meydana gelen viral mutasyonların yönünü ve etkilerini öngörmek zordur. Bu derlemede ADE, monoklonal antikorlar ve mutasyonların COVID-19 pandemisi üzerine olası etkilerine yönelik bilimsel verilerin irdelenmesi amaçlanmıştır.

References

  • 1. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016; 29;3(1): 237-26. [CrossRef]
  • 2. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116. [CrossRef]
  • 3. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch B-J, Rey FA, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 2017; 114: 11157-62. [CrossRef]
  • 4. Du L, He Y, Zhou Y, Liu, Zheng B-J, Jiang S. The spike protein of SARS- CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7: 226-36. [CrossRef]
  • 5. Yasui F, Kohara M, Kitabatake M, Nishiwaki T, Fujii H, Tateno C, et al. Phagocytic cells contribute to the antibody- mediated elimination of pulmonary- infected SARS coronavirus. Virology 2014; 454:157-68. [CrossRef]
  • 6. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020; 20: 339-41. [CrossRef]
  • 7. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS- CoV-2. Nature Review Immunology 2020; 20: 393-5. [CrossRef]
  • 8. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa344. [CrossRef]
  • 9. Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361: 1767v72. [CrossRef]
  • 10. Ho M-S, Wei-Ju C, Chen H-Y, Lin S-F, Wang M-C, Di J, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005; 11: 1730-7. [CrossRef]
  • 11. Robinson WEJr, Montefiori DC, Mitchell WM. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet 1988; 8589: 790-4. [CrossRef]
  • 12. Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. Antibody-dependent enhancement of Ebola virus infection. J Virol 2003; 77: 753944. [CrossRef]
  • 13. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet 2019; 393: 350-63. [CrossRef]
  • 14. Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977; 146: 201-17. [CrossRef]
  • 15. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med 2018; 379(4): 327-40. [CrossRef]
  • 16. Kliks SC, Nimmanitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 1988; 38: 411-4119. [CrossRef]
  • 17. Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis 1981; 4: 175-89. [CrossRef]
  • 18. Talbot HK, Shepherd BE, Crowe Jr JE, Griffin MR, Edwards KM, Podsiad AM, et al. The pediatric burden of human coronaviruses evaluated for twenty years. Pediatr Infect Dis J 2009; 28(8): 682-7. [CrossRef]
  • 19. Wang S-F, Tseng S-P, Yen C-H, Yang J-Y, Tsao C-H, Shen C-W, et al. Antibody- dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys.Res. Commun 2014; 451: 208-14. [CrossRef]
  • 20. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, et al. Anti- severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease- independent FcγR pathway. J Virol 2011; 85: 10582-97. [CrossRef]
  • 21. Yip MS, Leung HL, Li PH, Cheung CY, Dutry I, Li D, et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med J 2016; 22: 25-31.
  • 22. Yasui F, Kai H, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS- CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 2008; 181: 6337-48. [CrossRef]
  • 23. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4(4): e123158. [CrossRef]
  • 24. Wang, Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non- human primates. ACS Infect Dis 2016;2:361-76. [CrossRef]
  • 25. WanY, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Journal of Virology 2020; 94: e02015-19. [CrossRef]
  • 26. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double- inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011; 85: 12201-15. [CrossRef]
  • 27. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired- fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 2012; 18: 1820-6. [CrossRef]
  • 28. Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C. A perspective on potential antibodydependent enhancement of SARS-CoV-2. Nature 2020; doi.org/10.1038/ s41586-020-2538-8. [CrossRef]
  • 29. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, He X, et al. Viral kinetics and antibody responses in patients with COVID-19. Preprint at medRxiv 2020; https://doi.org/10.1101/2020.03.24.20042382. [CrossRef]
  • 30. Jiang H-w, Li Y, Zhang H-n, Wang W, Men D, Yang X, et al. Global profiling of SARS-CoV-2 specific IgG/IgM responses of convalescents using a proteome microarray. Preprint at medRxiv 2020;https://doi.org/10.1101/2020.03.20.20039495. [CrossRef]
  • 31. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Preprint at medRxiv 2020; doi.org/1 0.1101/2020.03.30.20047365. [CrossRef]
  • 32. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016; 351: 1339-42. [CrossRef]
  • 33. Levine MM. Monoclonal Antibody Therapy for Ebola Virus Disease. N Engl J Med 2019; 38: 2365-6. [CrossRef]
  • 34. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to maka human monoclonal antibodies from Emory B cells: patent neutralization of SARS coronavirus. Nat Med 2004;10: 87-5. [CrossRef]
  • 35. Rockx B, Donaldson E, Frieman M, Sheahan T, Corti D, Lanzavecchia A, et al. Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. J Infect Dis 2010; 20: 946-55. [CrossRef]
  • 36. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Veesler D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 2019; 26: 481-9. [CrossRef]
  • 37. ZhouP, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et. al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-3. [CrossRef]
  • 38. Meng Y, Nicholas C.W, Xueyong Z, Chang-Chun DL, Ray TYS, Huibin L, Chris KPM, Ian AW. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368: 630-3. [CrossRef]
  • 39. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et. al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-3. [CrossRef]
  • 40. ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CS, Cox F. Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants. PLOS Med 2006; 3: e237. [CrossRef]
  • 41. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: An immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013; 41: 34-40. [CrossRef]
  • 42. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, et al. patent binding of 2019 novel coronavirus spike protein by a SARS coronavirusspecific human monoclonal antibody. Emerg. Microbes Infect 2020; 9: 382-5. [CrossRef]
  • 43. Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, McLellan JS, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. bioRxiv 2020. [CrossRef]
  • 44. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, et al. Structural and functional analysis of a patent sarbecovirus neutralizing antibody. bioRxiv 2020. [CrossRef] 45. Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020; doi.org/10.1038/s41586-020-2548-6. [CrossRef]
  • 46. Grubaugh ND, Petrone ME, Holmes EC. We shouldn't worry when a virus mutates during disease outbreaks. Nature 2020; 5: 529-30. [CrossRef]
  • 47. The Chinese SARS Molecular Epidemiology Consortium. Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China. Science 2004; 303: 1666-9. [CrossRef]
  • 48. Zhu Y, Liu M, Zhao W, Zhang J, Zhang X, Wang K, et al. Isolation of virus from a SARS patient and genome-wide analysis of genetic mutations related to pathogenesis and epidemiology from 47 SARS-CoV isolates. Virus Genes 2005; 30(1): 93-102. [CrossRef]
  • 49. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 2020; doi:/10.1101/2020.04.29.069054. [CrossRef]
  • 50. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020; doi.org/10.1016/j.cell. [CrossRef]
  • 51. Polack FP. Atypical Measles and Enhanced Respiratory Syncytial Virus Disease (ERD) Made Simple. Pediatr Res 2007; 62(1): 111-5. [CrossRef]
  • 52. Sokolowska M, Lukasik Z, Agache I, Akdis CA, Akdis D, Akdis M, et al. Immunology of COVID‐19: mechanisms, clinical outcome, diagnostics and perspectives - a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; doi: 10.1111/all.14462. [CrossRef]
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Bülent Çakal 0000-0002-1254-844X

Publication Date August 26, 2020
Submission Date May 27, 2020
Published in Issue Year 2020

Cite

Vancouver Çakal B. COVID-19’da Antikor Bağımlı İmmünpataloji, Monoklonal Antikorlar ve Mutasyonlar. Experimed. 2020;10(2):112-8.