Research Article
BibTex RIS Cite

Metal Nanopartiküller Aracılığıyla, Capsicum annuum L.’nin Gen Ekspresyonu ve Fizyolojik Parametreleri Üzerindeki Değişiklikler

Year 2021, , 88 - 95, 25.08.2021
https://doi.org/10.26650/experimed.2021.949102

Abstract

Amaç: Nanopartiküllerin bitkiler tarafından alınması ve biriktiril-mesi, bu bitkilerin insanlar tarafından tüketilmesi durumunda in-san sağlığı için potansiyel bir tehdit oluşturmaktadır. Bu çalışmada, nAl2O3 ve nZnO'nun Capsicum annuum L. (biber)'in çimlenmesi, kök büyümesi ile aquaporin ve dehidrin genlerinin ekspresyon seviyeleri üzerindeki potansiyel yararlı veya inhibe edici etkilerinin analiz edilmesi amaçlanmıştır.

Gereç ve Yöntem: Biber tohumlarının çimlenmesi için farklı konsantrasyonlarda (0,5, 2,5 veya 5,0 mM) nAl2O3 ve nZnO kullanıl-mıştır. Nanopartikül uygulanmış biber bitkilerinde iyon içeriklerini belirlemek için, ICP-MS analizi yapılmıştır. Aquaporin ve dehidrin gen ekspresyonlarının seviyeleri ise kantitatif ters transkripsiyon polimeraz zincir reaksiyonu (qRT-PCR) ile analiz edilmiştir.

Bulgular: Nanopartikül uygulamasının biber çimlenmesi üzerinde etkisi tespit edilmemiştir. nAl2O3 uygulamaları kök gelişimini değiştirmezken, yüksek nZnO konsantrasyonları kök uzunluğunu ve kök sayısını olumsuz yönde etkilemiştir. Köklerdeki aquaporin ve dehidrin gen ekspresyonu, özellikle 0,5 mM nZnO uygulaması ile artmıştır. nAl2O3 uygulanan kök ve gövdelerde ise dehidrin gen ekspresyonu azalmıştır.

Sonuç: Gen ekspresyon ve büyüme parametrelerindeki değişiklikler, özellikle nZnO'nun biber bitkileri için potansiyel olarak fitotok-sik olduğunu göstermiştir. Ayrıca, ekspresyon analizi, test edilen genlerin nanopartikül bazlı abiyotik strese yanıt olarak rol oynaya-bileceğini önermektedir.

References

  • 1. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, et al. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem 2017; 5: 78. [CrossRef] google scholar
  • 2. Sanchez-Dominguez M, Boutonnet M, Solans C. A novel approach to metal and metal oxide nanoparticle synthesis: the oilin-water micro-emulsion reaction method. J Nanopart Res 2009; 11:1823. [CrossRef] google scholar
  • 3. Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 2019; 227:109-116. [CrossRef] google scholar
  • 4. Dogaroglu ZG, Koleli N. TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.) CLEAN Soil, Air, Water 2017; 45(11): 1700096 (1-7). [CrossRef] google scholar
  • 5. Afzal Z, Howton TC, Sun Y, Mukhtar MS. The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4(1):9. [CrossRef] google scholar
  • 6. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z. Comparison of the tox-icity of silver nanoparticles and silver ions on the growth of ter-restrial plant model Arabidopsis thaliana. J Environ Sci 2013; 25, 1947-1955. [CrossRef] google scholar
  • 7. Liu Y, Song Q, Li D, Yang X and Li D. Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 2017; 8: 1018. [CrossRef] google scholar
  • 8. Nair PM, Chung IM. Impact of copper oxide nanoparticles expo-sure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res Int 2014; 21: 12709-22. [CrossRef] google scholar
  • 9. Selvakesavan RK, Franklin G. Nanoparticles affect the expression stability of housekeeping genes in plant cells. Nanotechnol Sci Appl 2020; 13: 77-88. [CrossRef] google scholar
  • 10. Ma X, Yan J. Plant uptake and accumulation of engineered metal-lic nanoparticles from lab to field conditions. Curr Opin Environ Sci Health 2018; 6: 16-20. [CrossRef] google scholar
  • 11. Olatunji TL, Afolayan AJ. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficien-cies: A review. Food Sci Nutr 2018; 6(8): 2239-51. [CrossRef] google scholar
  • 12. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-New Capabilities and Interfaces. Nucleic Acids Res 2012; 40(15): e115. [CrossRef] google scholar
  • 13. Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Bio-phys Res Commun 2011; 416(1-2): 24-30. [CrossRef] google scholar
  • 14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 2002; research0034.0031. [CrossRef] google scholar
  • 15. Leclerc S, Wilkinson KJ. Bioaccumulation of nanosilver by Chlam-ydomonas reinhardtii- Nanoparticle or the free ion? Environ Sci Technol 2014; 48(1):358-64. [CrossRef] google scholar
  • 16. Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, et al. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 2020; 42(1): 147-58. [CrossRef] google scholar
  • 17. Jin Y, Fan X, Li X, Zhang Z, Sun L, Fu Z, et al. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to alu-minum oxide nanoparticles and ionic aluminum. Environ Pollut 2017; 228: 517-27. [CrossRef] google scholar
  • 18. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 5: 1062562. [CrossRef] google scholar
  • 19. Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 2009; 43(24): 94739. [CrossRef] google scholar
  • 20. Kumar S, Patra AK, Datta SC, Rosin KG, Purakayastha TJ. Phytotox-icity of nanoparticles to seed germination of plants. Int J of Adv Res 2015; 3(3): 854-65. google scholar
  • 21. Lee CW, Mahendra YS, Zodrow YK, Li YD, Tsai YYC, Braam J. Devel-opmental phytotoxicity of metal oxide nanoparticles to Arabidop-sis thaliana. Environ Toxicol Chem 2010; 29: 669-75. [CrossRef] google scholar
  • 22. Boonyanitipong P, Kumar P, Kositsup B, Baruah S, Dutta J. Effects of zinc oxide nanoparticles on roots of rice Oryza Sativa L. Int Conf Environ BioSci 2011; 21: 172-6. google scholar
  • 23. Akdemir H. Evaluation of transcription factor and aquaporin gene expressions in response to Al2O3 and ZnO nanoparticles during barley germination, Plant Physiol Biochem 2021; 166: 466-76. [CrossRef] google scholar
  • 24. Ma X, Geisler-Lee J, Deng Y, Kolmakov A. Interactions between en-gineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 2010; 408: 3053-61. [CrossRef] google scholar
  • 25. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Bar-riers, pathways and processes for uptake, translocation and accu-mulation of nanomaterials in plants - Critical review. Nanotoxicol-ogy 2016; 10(3): 257-78. [CrossRef] google scholar
  • 26. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 2008; 42(23): 8959-64. [CrossRef] google scholar
  • 27. Cota Ruiz K, Delgado Rios M, Martinez-Martinez A, Nunez-Gastelum JA, Peralta Videa JR, Gardea Torresdey JL. Current find-ings on terrestrial plants - Engineered nanomaterial interactions: Are plants capable of phytoremediating nanomaterials from soil? Curr Opin Environ Sci Health 2018; 6: 9-15. [CrossRef] google scholar
  • 28. Choi DW, Zhu B, Close TJ. The barley (Hordeum vulgare L.) dehy-drin multigene family: sequences, allele types, chromosome as-signments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 1999; 98: 1234-47. [CrossRef] google scholar
  • 29. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV et al. Complex genetic, photothermal, and pho-toacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 2011; 108(3): 1028-33. [CrossRef] google scholar
  • 30. Gitto A, Fricke W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. Physiol Plant 2018; 164: 176-90. [CrossRef] google scholar

Metal Nanoparticles-Mediated Changes on Gene Expressions and Physiological Parameters of Capsicum annuum L.

Year 2021, , 88 - 95, 25.08.2021
https://doi.org/10.26650/experimed.2021.949102

Abstract

Objective: The uptake and accumulation of nanoparticles by plants create a potential threat for human health in cases where humans consume the plants. The aim of the study was to analyze the potential beneficial or inhibitory effects of nAl2O3 and nZnO on Capsicum annuum L. (pepper)'s germination, root growth, and expression levels of aquaporin and dehydrin genes.

Material and Method: Different concentrations (0.5, 2.5, or 5.0 mM) of nAl2O3 and nZnO were used for the germination of pepper seeds. ICP-MS analysis was performed to determine ion contents in nanoparticle-treated pepper plants. Levels of aquaporin and dehy-drin gene expressions were analyzed by quantitative reverse-tran-scription polymerase chain reaction (qRT-PCR).

Results: The pepper germination was not affected by nanoparticle applications. While nAl2O3 treatments did not change root growth, higher concentrations of nZnO negatively affected root length and root number. In particular, the application of 0.5 mM nZnO signifi-cantly upregulated aquaporin and dehydrin gene expressions in roots. Downregulation of dehydrin gene expression occurred in stems and roots after exposure to nAl2O3 treatments.

Conclusion: The gene expression alterations and changes of growth parameters showed especially nZnO have potentially phy-totoxic for pepper plants. Moreover, expression analysis suggested that the tested genes may play roles in response to the nanoparti-cle-based abiotic stress

References

  • 1. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, et al. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem 2017; 5: 78. [CrossRef] google scholar
  • 2. Sanchez-Dominguez M, Boutonnet M, Solans C. A novel approach to metal and metal oxide nanoparticle synthesis: the oilin-water micro-emulsion reaction method. J Nanopart Res 2009; 11:1823. [CrossRef] google scholar
  • 3. Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 2019; 227:109-116. [CrossRef] google scholar
  • 4. Dogaroglu ZG, Koleli N. TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.) CLEAN Soil, Air, Water 2017; 45(11): 1700096 (1-7). [CrossRef] google scholar
  • 5. Afzal Z, Howton TC, Sun Y, Mukhtar MS. The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4(1):9. [CrossRef] google scholar
  • 6. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z. Comparison of the tox-icity of silver nanoparticles and silver ions on the growth of ter-restrial plant model Arabidopsis thaliana. J Environ Sci 2013; 25, 1947-1955. [CrossRef] google scholar
  • 7. Liu Y, Song Q, Li D, Yang X and Li D. Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 2017; 8: 1018. [CrossRef] google scholar
  • 8. Nair PM, Chung IM. Impact of copper oxide nanoparticles expo-sure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res Int 2014; 21: 12709-22. [CrossRef] google scholar
  • 9. Selvakesavan RK, Franklin G. Nanoparticles affect the expression stability of housekeeping genes in plant cells. Nanotechnol Sci Appl 2020; 13: 77-88. [CrossRef] google scholar
  • 10. Ma X, Yan J. Plant uptake and accumulation of engineered metal-lic nanoparticles from lab to field conditions. Curr Opin Environ Sci Health 2018; 6: 16-20. [CrossRef] google scholar
  • 11. Olatunji TL, Afolayan AJ. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficien-cies: A review. Food Sci Nutr 2018; 6(8): 2239-51. [CrossRef] google scholar
  • 12. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-New Capabilities and Interfaces. Nucleic Acids Res 2012; 40(15): e115. [CrossRef] google scholar
  • 13. Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Bio-phys Res Commun 2011; 416(1-2): 24-30. [CrossRef] google scholar
  • 14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 2002; research0034.0031. [CrossRef] google scholar
  • 15. Leclerc S, Wilkinson KJ. Bioaccumulation of nanosilver by Chlam-ydomonas reinhardtii- Nanoparticle or the free ion? Environ Sci Technol 2014; 48(1):358-64. [CrossRef] google scholar
  • 16. Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, et al. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 2020; 42(1): 147-58. [CrossRef] google scholar
  • 17. Jin Y, Fan X, Li X, Zhang Z, Sun L, Fu Z, et al. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to alu-minum oxide nanoparticles and ionic aluminum. Environ Pollut 2017; 228: 517-27. [CrossRef] google scholar
  • 18. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 5: 1062562. [CrossRef] google scholar
  • 19. Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 2009; 43(24): 94739. [CrossRef] google scholar
  • 20. Kumar S, Patra AK, Datta SC, Rosin KG, Purakayastha TJ. Phytotox-icity of nanoparticles to seed germination of plants. Int J of Adv Res 2015; 3(3): 854-65. google scholar
  • 21. Lee CW, Mahendra YS, Zodrow YK, Li YD, Tsai YYC, Braam J. Devel-opmental phytotoxicity of metal oxide nanoparticles to Arabidop-sis thaliana. Environ Toxicol Chem 2010; 29: 669-75. [CrossRef] google scholar
  • 22. Boonyanitipong P, Kumar P, Kositsup B, Baruah S, Dutta J. Effects of zinc oxide nanoparticles on roots of rice Oryza Sativa L. Int Conf Environ BioSci 2011; 21: 172-6. google scholar
  • 23. Akdemir H. Evaluation of transcription factor and aquaporin gene expressions in response to Al2O3 and ZnO nanoparticles during barley germination, Plant Physiol Biochem 2021; 166: 466-76. [CrossRef] google scholar
  • 24. Ma X, Geisler-Lee J, Deng Y, Kolmakov A. Interactions between en-gineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 2010; 408: 3053-61. [CrossRef] google scholar
  • 25. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Bar-riers, pathways and processes for uptake, translocation and accu-mulation of nanomaterials in plants - Critical review. Nanotoxicol-ogy 2016; 10(3): 257-78. [CrossRef] google scholar
  • 26. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 2008; 42(23): 8959-64. [CrossRef] google scholar
  • 27. Cota Ruiz K, Delgado Rios M, Martinez-Martinez A, Nunez-Gastelum JA, Peralta Videa JR, Gardea Torresdey JL. Current find-ings on terrestrial plants - Engineered nanomaterial interactions: Are plants capable of phytoremediating nanomaterials from soil? Curr Opin Environ Sci Health 2018; 6: 9-15. [CrossRef] google scholar
  • 28. Choi DW, Zhu B, Close TJ. The barley (Hordeum vulgare L.) dehy-drin multigene family: sequences, allele types, chromosome as-signments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 1999; 98: 1234-47. [CrossRef] google scholar
  • 29. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV et al. Complex genetic, photothermal, and pho-toacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 2011; 108(3): 1028-33. [CrossRef] google scholar
  • 30. Gitto A, Fricke W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. Physiol Plant 2018; 164: 176-90. [CrossRef] google scholar
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Hülya Akdemir 0000-0001-7923-3031

Publication Date August 25, 2021
Submission Date June 7, 2021
Published in Issue Year 2021

Cite

Vancouver Akdemir H. Metal Nanoparticles-Mediated Changes on Gene Expressions and Physiological Parameters of Capsicum annuum L. Experimed. 2021;11(2):88-95.