Research Article
BibTex RIS Cite

Sodyum Lauril Sülfatın Gelişmekte Olan Zebra Balığı Embriyolarında Biyouyumluluğu

Year 2021, , 67 - 72, 25.08.2021
https://doi.org/10.26650/experimed.2021.953435

Abstract

Amaç: Sodyum lauril sülfat (SLS), ev temizlik ürünleri ve diş macun-larında emülsifiye edici temizlik maddesi olarak kullanılan anyonik bir yüzey aktif maddedir. Birçok diş macunu fırçalarken köpük oluşumuna yol açan SLS içerir. Ancak SLS hassas diş ve diş etlerini tahriş edebilir. Lipid peroksidasyonu (LPO), çeşitli hastalıkların patofizyo-lojisinde oksidatif strese yol açan serbest radikallerin saldırısı ile başlatılan bir otooksidasyon sürecidir. LPO, LPO'nun biyobelirteçleri olarak görev yapan farklı aldehitler, ketonlar, alkanlar dahil olmak üzere reaktif ürünlerin oluşumuna neden olur. Çalışmamızın amacı, SLS'ye maruz kalan zebra balığı embriyolarında oluşan LPO'yu değerlendirmektir.

Gereç ve Yöntem: Normal olarak bölünen küresel embriyolar, 72 saat boyunca plaka kuyucuklarında düşük ve yüksek dozda SLS'ye maruz bırakılmıştır. Mortalite ve kuluçkadan çıkma oranları belir-lenmiştir. Tiyobarbitürik asit reaktif maddeler olarak LPO'nun son ürünü olan malondialdehit (MDA) düzeyini belirlemek için Yagi yöntemi kullanılmıştır.

Bulgular: Bulgularımız, hem düşük SLS (p<0,05) hem de yüksek doz SLS’ye (p<0,05) maruz kalan zebra balığı embriyolarında kont-rol grubu ile karşılaştırıldığında LPO'nun önemli ölçüde arttığını göstermiştir.

Sonuç: LPO'nun embriyogenez sırasında SLS'ye maruz kalmanın erken bir göstergesi olduğu öne sürülebilir ve bu bulguyu doğru-lamak için farklı çalışmaların yapılması gerektiği düşünülmektedir.

References

  • 1. Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, et al. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphin-golipid metabolisms in detergent toxicity mechanisms. Biochimie 2020; 178: 148-57. [CrossRef] google scholar
  • 2. Bondi CAM, Marks JL, Wroblewski LB, Raatikainen HS, Lenox RS, Gebhardt KE. Human and Environmental Toxicity of Sodium Lau-ryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ Health Insights 2015; 9: 27-32. [CrossRef] google scholar
  • 3. Cosmetic Ingredient Review (CIR). Final report on the safety as-sessment of sodium lauryl sulfate and ammonium lauryl sulfate. Int J Toxicol 1983; 2(7): 1-34. google scholar
  • 4. Robinson VC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Marks JG, et al. Final report of the amended safety assessment of sodium lauryl sulfate and related salts of sulfated ethoxylated alcohols. Int J Toxicol 2010; 29(4): 151S-61S. google scholar
  • 5. Proctor & Gamble (P&G). Safety Data Sheets. Accessed August 19, 2015. Available from: URL: http://www.pgprod-uctsafety.com/ productsafety. google scholar
  • 6. Seventh Generation. Material Safety Data Sheets. Accessed Au-gust 17, 2015. Available from: URL: http://www.sev- enthgenera-tion.com/material-safety-data-sheets. google scholar
  • 7. Lippert F. An introduction to toothpaste its purpose, history and ingredients. Van Loveren C. Toothpastes. 23. Basel: Karger; 2013. p. 1-14. google scholar
  • 8. Jenkins S, Andy M, Newcombe R. Triclosan and sodium lauryl sul-phate mouth rinses effects on salivary bacterial counts. J Clin Peri-odontol 1991; 18(2):140-8. [CrossRef] google scholar
  • 9. Herlofson BB, Barkvoll P. Oral Mucosal desquamation caused by two toothpaste detergents in an experimental model. Eur J Oral Sci 1996; 104(1): 21-6. google scholar
  • 10. Material Safety Data Sheet: Sodium Chloride. Accessed August 20, 2015. Available from: URL: http://www.sciencelab.com/msds. php?msdsId. google scholar
  • 11. Product Bulletin: Sodium Lauryl Sulfate. Stepan Company, North-field, Illinois; 2012. Available from: URL: https://www.stepan.com google scholar
  • 12. Material Safty Data Sheet: STEPANOL WA-EXTRA K. Stephan Com-pany, Northfield, Illinois; 2006. Available from: URL: https://www. stepan.com google scholar
  • 13. OECD Screening Information Data Set (SIDS). Sodium Dodecyl Sulfate. August 19, 2015. Available from: URL:http://www.chem. unep.ch/irptc/sids/OECDSIDS/151213.htm google scholar
  • 14. Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet ze-brafish: Toxicity evaluation and Drug Delivery Applications. J Con-trol Release 2019; 311-312: 301-18. google scholar
  • 15. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. The Zebrafish embryo model in environmental Risk assessment applications beyond acute toxicity testing. Environ Sci Pollut Res 2008; 15(5): 394-404. [CrossRef] google scholar
  • 16. Chakravarty S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as an in vivo high-throughput Model for Genotoxicity. Zebrafish 2014; 11: 154-66. [CrossRef] google scholar
  • 17. Kayhan FE, Kaymak G, Esmerduruel HE, Tartarkızılkaya Ş. Biyolojik Araştırmalarda Zebra Balığının Kullanılması ve Önemi. GBAD 2018; 7: 2. google scholar
  • 18. Gaschler M, Stockwell B R. Lipid peroxidation in cell death. Bio-chem Biophys Res Commun 2017; 482(3): 419-25. [CrossRef] google scholar
  • 19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measure-ment with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. [CrossRef] google scholar
  • 20. Yagi K. Assay for blood plasma or serum. Methods Enzymol 1984; 105: 328-37. [CrossRef] google scholar
  • 21. Hoogendoorn H, Scholtes W. Influence of the ctivation of the lac-toperoxidase System in saliva on the initiation of caries and chron-ic, recurrent aphthes. I. Ned Tijdschr Tandheelkd 1979; 86(1): 36-9. google scholar
  • 22. Shim YJ, Choi JH, Ahn HJ, Kwon JS. Effect of sodium lauryl sulfate on recurrent aphthous stomatitis: a randomized controlled clini-cal trial. Oral Dis 2012; 18(7): 655-60. [CrossRef] google scholar
  • 23. Siegel IA, Gordon HP. Surfactant induced alterations of permea-bility of rabbit oral mucosa in vitro. Exp Mol Pathol 1986; 44(2): 132-7. [CrossRef] google scholar
  • 24. Stec IP. A possible relationship between desquamation and denti-frices. A clinical study. J Am Dent Hyg Assoc 1972; 46(1): 42-5. google scholar
  • 25. Kowitz G, Lucatorto F, Bennett W. Effects of dentifrices on soft tis-sues of the oral cavity. J Oral Med. 1973; 28(4): 105-9. google scholar
  • 26. Allen AL, Hawley CE, Cutright DE, Seibert JS. An investigation of the clinical and histologic effects of selected dentifrices on human palatal mucosa. J Periodontol 1975; 46(2): 102-12. [CrossRef] google scholar
  • 27. Baert JH, Veys RJ. Triclosan inhibits sodium lauryl sulphate-in-duced changes in expression of cytokeratin genes in hamster check pouch epithelium. J Oral Pathol Med 1997; 26: 181-6. [CrossRef] google scholar
  • 28. Tadin A, Gavic L, Govic T, Galic N, Vladislavic ND, Zeljezic D. In vivo evaluation of fluoride and sodium lauryl sulphate in toothpaste on buccal epithelial cells toxicity. Acta Odontol Scand 2019; 77: 386-93. [CrossRef] google scholar
  • 29. Meşeli S, Yanıkoğlu F, Arslantunalı Tağtekin D. Diş Macunları Toksik Mi? Arslantunalı Tağtekin D, editör. Diş Macun ve Kremleri. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.122-7. google scholar
  • 30. Escarrone AL, Caldas SS, Primel EG, Martins SE, Nery LE. Uptake, tissue distribution and depuration of triclosan in the guppy Poe-cilia vivipara acclimated to freshwater. Sci Total Environ 2016; 560561: 218-24. google scholar
  • 31. Newton AP, Cadena SM, Rocha ME, Carnieri EG, Martinelli De Ol-iveira MB. Effect of triclosan (TRN) on energy-linked functions of rat liver mi- tochondria. Toxicol Lett 2005; 160: 49-59. [CrossRef] google scholar
  • 32. Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is triclosan a neu-rotoxic agent? J Toxicol Environ Health 2017; B 20:104-17. google scholar
  • 33. Cherednichenko G, Zhang R, Bannister RA, Timofeyev V, Li N, Fritsch EB, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci USA 2012; 109: 14158-63. [CrossRef] google scholar
  • 34. Etzel TM, Calafat AM, Ye X, Chen A, Lanphear BP, Savitz DA, et al. Urinary triclosan concen- trations during pregnancy and birth out- comes. Environ Res 2017; 156: 505-11. [CrossRef] google scholar
  • 35. Yi HY, Wang ZY, Li XJ, Yin M, Wang LH, Aldalbahi A, et al. Silica nanoparticles target a Wnt signal transducer for degradation and im- pour embryonic development in zebrafish. Theranostics 2016; 6(11): 1810-20. [CrossRef] google scholar
  • 36. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxy-apatite and its applications in preventive, restorative and regen-erative dentistry: a review of literature. Ann Stomatol (Roma) 2014; 5(3):108-14. google scholar
  • 37. Brunelli E, Talarico E, Corapi B, Perrotta I, Tripepi S. Effects of a sub-lethal concentration of sodium lauryl sulphate on the morphol-ogy and Na+/K+ ATPase activity in the gill of the ornate wrasse (Thalassoma pavo). Ecotoxicol Environ Saf 2008; 71(2): 436-45. [CrossRef] google scholar
  • 38. Lock, RAC, Van Overbeeke P. Effects of mercuryc chloride and-methylmercuryc chloride on mucous secretion in rainbow trout, Salmogairdneri Richardson. Comp Biochem Physiol 1981; 69: 6773. google scholar
  • 39. Mathur AK, Gupta BN, Singh A, Singh S, Shanker R. Renal toxici-ty of nickel, sodium lauryl sulphate and their combination after dermal application in guinea pigs. Biomed Environ Sci 1993; 6(3): 231-6. google scholar

The Biocompatibility of Sodium Lauryl Sulphate on Developing Zebrafish Embryos

Year 2021, , 67 - 72, 25.08.2021
https://doi.org/10.26650/experimed.2021.953435

Abstract

Objective: As an anionic surfactant, sodium lauryl sulphate (SLS), is used as an emulsifying agent in toothpastes as well as many dif-ferent household cleaning products. Many toothpastes contain SLS and it is responsible for the formation of foam when brush-ing. However SLS may also irritate sensitive teeth and gums. Lip-id peroxidation (LPO) is defined as an autoxidation process that is induced through the attack of free oxygen radicals leading to oxidative stress in the pathophysiology of various diseases. LPO causes the formation of highly reactive products including differ-ent aldehydes, ketones, and alkanes serving as biomarkers of LPO. In our study we aimed to expose zebrafish embryos to SLS and de-termine LPO in SLS exposed zebrafish embryos.

Material and Method: Zebrafish embryos that were dividing nor-mally and which had spherical shapes were chosen and they were ex-posed to SLS both in low and high concentrations in well plates for 72 hours. Rates of mortality and hatching were determined. The levels of malondialdehyde were evaluated using the Yagi's method as the end products of LPO in the form of thiobarbituric acid reactive substances.

Results: Our findings showed LPO increased significantly in both low SLS (p<0.05) and high dose SLS (p<0.05) exposed zebrafish embryos when they were compared to the control group.

Conclusion: It may be suggested that LPO is an early indicator of exposure to SLS during embryogenesis and further studies are re-quired to confirm this finding.

References

  • 1. Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, et al. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphin-golipid metabolisms in detergent toxicity mechanisms. Biochimie 2020; 178: 148-57. [CrossRef] google scholar
  • 2. Bondi CAM, Marks JL, Wroblewski LB, Raatikainen HS, Lenox RS, Gebhardt KE. Human and Environmental Toxicity of Sodium Lau-ryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ Health Insights 2015; 9: 27-32. [CrossRef] google scholar
  • 3. Cosmetic Ingredient Review (CIR). Final report on the safety as-sessment of sodium lauryl sulfate and ammonium lauryl sulfate. Int J Toxicol 1983; 2(7): 1-34. google scholar
  • 4. Robinson VC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Marks JG, et al. Final report of the amended safety assessment of sodium lauryl sulfate and related salts of sulfated ethoxylated alcohols. Int J Toxicol 2010; 29(4): 151S-61S. google scholar
  • 5. Proctor & Gamble (P&G). Safety Data Sheets. Accessed August 19, 2015. Available from: URL: http://www.pgprod-uctsafety.com/ productsafety. google scholar
  • 6. Seventh Generation. Material Safety Data Sheets. Accessed Au-gust 17, 2015. Available from: URL: http://www.sev- enthgenera-tion.com/material-safety-data-sheets. google scholar
  • 7. Lippert F. An introduction to toothpaste its purpose, history and ingredients. Van Loveren C. Toothpastes. 23. Basel: Karger; 2013. p. 1-14. google scholar
  • 8. Jenkins S, Andy M, Newcombe R. Triclosan and sodium lauryl sul-phate mouth rinses effects on salivary bacterial counts. J Clin Peri-odontol 1991; 18(2):140-8. [CrossRef] google scholar
  • 9. Herlofson BB, Barkvoll P. Oral Mucosal desquamation caused by two toothpaste detergents in an experimental model. Eur J Oral Sci 1996; 104(1): 21-6. google scholar
  • 10. Material Safety Data Sheet: Sodium Chloride. Accessed August 20, 2015. Available from: URL: http://www.sciencelab.com/msds. php?msdsId. google scholar
  • 11. Product Bulletin: Sodium Lauryl Sulfate. Stepan Company, North-field, Illinois; 2012. Available from: URL: https://www.stepan.com google scholar
  • 12. Material Safty Data Sheet: STEPANOL WA-EXTRA K. Stephan Com-pany, Northfield, Illinois; 2006. Available from: URL: https://www. stepan.com google scholar
  • 13. OECD Screening Information Data Set (SIDS). Sodium Dodecyl Sulfate. August 19, 2015. Available from: URL:http://www.chem. unep.ch/irptc/sids/OECDSIDS/151213.htm google scholar
  • 14. Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet ze-brafish: Toxicity evaluation and Drug Delivery Applications. J Con-trol Release 2019; 311-312: 301-18. google scholar
  • 15. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. The Zebrafish embryo model in environmental Risk assessment applications beyond acute toxicity testing. Environ Sci Pollut Res 2008; 15(5): 394-404. [CrossRef] google scholar
  • 16. Chakravarty S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as an in vivo high-throughput Model for Genotoxicity. Zebrafish 2014; 11: 154-66. [CrossRef] google scholar
  • 17. Kayhan FE, Kaymak G, Esmerduruel HE, Tartarkızılkaya Ş. Biyolojik Araştırmalarda Zebra Balığının Kullanılması ve Önemi. GBAD 2018; 7: 2. google scholar
  • 18. Gaschler M, Stockwell B R. Lipid peroxidation in cell death. Bio-chem Biophys Res Commun 2017; 482(3): 419-25. [CrossRef] google scholar
  • 19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measure-ment with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. [CrossRef] google scholar
  • 20. Yagi K. Assay for blood plasma or serum. Methods Enzymol 1984; 105: 328-37. [CrossRef] google scholar
  • 21. Hoogendoorn H, Scholtes W. Influence of the ctivation of the lac-toperoxidase System in saliva on the initiation of caries and chron-ic, recurrent aphthes. I. Ned Tijdschr Tandheelkd 1979; 86(1): 36-9. google scholar
  • 22. Shim YJ, Choi JH, Ahn HJ, Kwon JS. Effect of sodium lauryl sulfate on recurrent aphthous stomatitis: a randomized controlled clini-cal trial. Oral Dis 2012; 18(7): 655-60. [CrossRef] google scholar
  • 23. Siegel IA, Gordon HP. Surfactant induced alterations of permea-bility of rabbit oral mucosa in vitro. Exp Mol Pathol 1986; 44(2): 132-7. [CrossRef] google scholar
  • 24. Stec IP. A possible relationship between desquamation and denti-frices. A clinical study. J Am Dent Hyg Assoc 1972; 46(1): 42-5. google scholar
  • 25. Kowitz G, Lucatorto F, Bennett W. Effects of dentifrices on soft tis-sues of the oral cavity. J Oral Med. 1973; 28(4): 105-9. google scholar
  • 26. Allen AL, Hawley CE, Cutright DE, Seibert JS. An investigation of the clinical and histologic effects of selected dentifrices on human palatal mucosa. J Periodontol 1975; 46(2): 102-12. [CrossRef] google scholar
  • 27. Baert JH, Veys RJ. Triclosan inhibits sodium lauryl sulphate-in-duced changes in expression of cytokeratin genes in hamster check pouch epithelium. J Oral Pathol Med 1997; 26: 181-6. [CrossRef] google scholar
  • 28. Tadin A, Gavic L, Govic T, Galic N, Vladislavic ND, Zeljezic D. In vivo evaluation of fluoride and sodium lauryl sulphate in toothpaste on buccal epithelial cells toxicity. Acta Odontol Scand 2019; 77: 386-93. [CrossRef] google scholar
  • 29. Meşeli S, Yanıkoğlu F, Arslantunalı Tağtekin D. Diş Macunları Toksik Mi? Arslantunalı Tağtekin D, editör. Diş Macun ve Kremleri. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.122-7. google scholar
  • 30. Escarrone AL, Caldas SS, Primel EG, Martins SE, Nery LE. Uptake, tissue distribution and depuration of triclosan in the guppy Poe-cilia vivipara acclimated to freshwater. Sci Total Environ 2016; 560561: 218-24. google scholar
  • 31. Newton AP, Cadena SM, Rocha ME, Carnieri EG, Martinelli De Ol-iveira MB. Effect of triclosan (TRN) on energy-linked functions of rat liver mi- tochondria. Toxicol Lett 2005; 160: 49-59. [CrossRef] google scholar
  • 32. Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is triclosan a neu-rotoxic agent? J Toxicol Environ Health 2017; B 20:104-17. google scholar
  • 33. Cherednichenko G, Zhang R, Bannister RA, Timofeyev V, Li N, Fritsch EB, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci USA 2012; 109: 14158-63. [CrossRef] google scholar
  • 34. Etzel TM, Calafat AM, Ye X, Chen A, Lanphear BP, Savitz DA, et al. Urinary triclosan concen- trations during pregnancy and birth out- comes. Environ Res 2017; 156: 505-11. [CrossRef] google scholar
  • 35. Yi HY, Wang ZY, Li XJ, Yin M, Wang LH, Aldalbahi A, et al. Silica nanoparticles target a Wnt signal transducer for degradation and im- pour embryonic development in zebrafish. Theranostics 2016; 6(11): 1810-20. [CrossRef] google scholar
  • 36. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxy-apatite and its applications in preventive, restorative and regen-erative dentistry: a review of literature. Ann Stomatol (Roma) 2014; 5(3):108-14. google scholar
  • 37. Brunelli E, Talarico E, Corapi B, Perrotta I, Tripepi S. Effects of a sub-lethal concentration of sodium lauryl sulphate on the morphol-ogy and Na+/K+ ATPase activity in the gill of the ornate wrasse (Thalassoma pavo). Ecotoxicol Environ Saf 2008; 71(2): 436-45. [CrossRef] google scholar
  • 38. Lock, RAC, Van Overbeeke P. Effects of mercuryc chloride and-methylmercuryc chloride on mucous secretion in rainbow trout, Salmogairdneri Richardson. Comp Biochem Physiol 1981; 69: 6773. google scholar
  • 39. Mathur AK, Gupta BN, Singh A, Singh S, Shanker R. Renal toxici-ty of nickel, sodium lauryl sulphate and their combination after dermal application in guinea pigs. Biomed Environ Sci 1993; 6(3): 231-6. google scholar
There are 39 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Simge Meşeli 0000-0002-2970-658X

Gül Kaplan 0000-0003-4477-5708

Derya Cansız 0000-0002-6274-801X

Ünsal Veli Üstündağ 0000-0003-0804-1475

İsmail Ünal 0000-0002-8664-3298

Ebru Emekli Alturfan 0000-0003-2419-8587

Funda Yanıkoğlu 0000-0001-5708-1030

Dilek Tağtekin 0000-0002-2675-1764

Publication Date August 25, 2021
Submission Date June 17, 2021
Published in Issue Year 2021

Cite

Vancouver Meşeli S, Kaplan G, Cansız D, Üstündağ ÜV, Ünal İ, Emekli Alturfan E, Yanıkoğlu F, Tağtekin D. The Biocompatibility of Sodium Lauryl Sulphate on Developing Zebrafish Embryos. Experimed. 2021;11(2):67-72.