Research Article
BibTex RIS Cite

Yara İyileşmesi ve Deneysel Yara Modelleri

Year 2019, Volume: 9 Issue: 3, 130 - 137, 01.12.2019

Abstract

Yara iyileşmesi hücresel, biyokimyasal ve sistemik proseslerde travma ile başlayan bozulmanın yeni doku oluşumu ile normal haline döndürülmesidir. Akut yaralar belirli bir süre içerisinde dokunun normal anatomik ve işlevsel bütünlüğüne geri dönebildiği yaralar olup tedavisi nisbeten problemsizdir. Kronik yaralar ise akut yaraların aksine, genellikle altta yatan bir hastalık nedeniyle yara iyileşme süreçlerinin kesintiye uğraması sonucu anatomik ve işlevsel bütünlüğün sağlanamadığı yaralardır. Kronik yaralar gelişmiş ülkelerde nüfusun önemli bir bölümünü etkileyen, yaşam kalitesini düşüren önemli bir sağlık sorunu olmasının yanı sıra, yara tedavisi sağlık sistemlerine ciddi bir mali yük getirmektedir. Son yıllardaki teknolojik gelişmelerle birlikte, yara tedavisinde kullanılan ilaçlar ve tıbbi cihazlar bakımından önemli ilerlemeler kaydedilmiştir, ancak bu gelişmelere rağmen, yara iyileşme süreçlerindeki karmaşık yapı ve hasta çeşitliliği nedeniyle yara tedavisi alanındaki deneysel araştırmalar, hala önemini korumaktadır. Bu derlemede, yara iyileşmesi ve deneysel yara modellerine odaklanılarak temel kavramlar ve araştırmada kullanılan güncel uygulamalar ele alınmıştır.

Cite this article as: Baktır G. Wound Repair and Experimental Wound Models. Experimed 2019; 9(3): 130-7.

References

  • 1 Mercandetti M, Cohen AJ. Wound healing and repair. Available from: https://emedicine.medscape.com/article/1298129-overview 2. Macdonald J, Asiedu K. WAWLC: World Alliance for Wound and Lymphedema Care. Wounds 2010; 22: 55-9. 3. Rajpaul K. Biofilm in wound care. Br J Community Nurs 2015; Suppl Wound Care: S6, S8, S10-1. [CrossRef] 4. Larsen JA, Overstreet J. Pulsed radio frequency energy in the treatment of complex diabetic foot wounds: two cases. J Wound Ostomy Continence Nurs 2008; 35: 523-7. [CrossRef] 5. Öztopalan DF, Işık R, Durmuş AS. Yara iyileşmesinde büyüme faktörleri ve sitokinlerin rolü. Dicle Üniv Vet Fak Derg 2017; 10: 83-8. 6. Coşkun Ö, Uzun G, Dal D ve ark. Kronik yarada tedavi yaklaşımları. Gülhane Tıp Derg 2016; 58: 207-28. 7. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2010; 18: 139-53. [CrossRef] 8. Greenhalgh DG. Models of wound healing. J Burn Care Rehabil 2005; 26: 293-305. [CrossRef] 9. Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 1995; 98: 827-33. [CrossRef] 10. Aydın OE, Tan Ö, Çinal H, Kara M, Çakmak MA. Deneysel Yara Modelleri. Turkiye Klinikleri J Plast Surg-Special Topics 2015; 4: 5-11. 11. Strande LF, Foley ST, Doolin EJ, Hewitt CW. In vitro bioartificial skin culture model of tissue rejection and inflammatory/ immune mechanisms. Transplant Proc 1997; 29: 2118-9. [CrossRef] 12. Emanualsson P, Kratz G. Characterization of a new in vitro burn wound model. Burns 1997; 23: 32-6. [CrossRef] 13. Nandi S, Brown AC. Characterizing cell migration within three-dimensional in vitro wound environments. J Vis Exp 2017; 126: doi: 10.3791/56099. [CrossRef] 14. Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen 2004; 12: 591-9. [CrossRef] 15. Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen 2001; 9: 66-76. [CrossRef] 16. Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol 2011; doi: 10.1155/2011/969618. [CrossRef] 17. Reid RR, Said HK, Mogford JE, Mustoe TA. The future of wound healing: Pursuing surgical models in transgenic and knockout mice. J Am Coll Surg 2004; 199: 578-85. [CrossRef] 18. Diegelmann RF, Lindblad WJ Cohen IK. A subcutaneous implant for wound healing studies in humans. J Surg Res 1986; 40: 229-37. [CrossRef] 19. Kurkinen M, Vaheri A, Roberts PJ, Stenman S. Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Med 1980; 43: 47-51. [CrossRef] 20. Sprugel KH, Mcpherson JM, Clowes AW, et al. Effects of growth factors in vivo: I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 1987; 129: 601-13. 21. Viljanto J. Cellstick: a device for wound healing studies in man. Description of the method. J Surg Res 1976; 20: 115-9. [CrossRef] 22. Diegelmann RF, Kim JC, Lindblad WJ, Smith TC, Harris TM, Cohen IK. Collection of leukocytes, fibroblasts, and collagen within an implantable reservoir tube during tissue repair. J Leukocyte Biol 1987; 42: 667-72. [CrossRef] 23. Schilling JA, Joel W, Shurby HM. Wound healing: a comparative study of the histochemical changes in granulation tissue contained steel wire mesh cylinders and polyvinyl sponges. Surgery 1959; 46: 702-10. 24. Hunt TK, Twomey P, Zedrefeldt B, Dunphy JE. Respiratory gas tensions and pH in healing wounds. Am J Surg 1967; 114: 302-7. [CrossRef] 25. Wong VW, Beasley B, Zepeda J, Dauskardt RH, Yock PG, Longaker MT, et al. A Mechanomodulatory Device to Minimize Incisional Scar Formation. Adv Wound Care (New Rochelle) 2013; 2: 185-94. [CrossRef] 26. Kilpadi DV, Lessing C, Derrick K. Healed porcine incisions previously treated with a surgical incision management system: mechanical, histomorphometric, and gene expression properties. Aesthetic Plast Surg 2014; 38: 767-78. [CrossRef] 27. Galiano RD, Michaels VJ, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004; 12: 485-92. [CrossRef] 28. Greenhalgh DG, Gamelli RL. Immunomodulators and wound healing. J Trauma 1987; 27: 510-4. [CrossRef] 29. Auerbach LJ, Galvez MG, De Clerck BK, Glotzbach J, Wehner MR, Chang EI, et al. A novel mouse model for frostbite injury. Wilderness Environ Med 2013; 24: 94-104. [CrossRef] 30. Levenson SM, Gruber CA, Rettura G, Gruber DK, Demetriou AA, Seifter E. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing. Ann Surg 1984; 200: 494-512. [CrossRef] 31. Alvarez OM, Gilbreath RL. Thiamine influence on collagen during the granulation of skin wounds. J Surg Res 1982; 32: 24-31. [CrossRef] 32. DeHaan BB, Ellis H, Wilks M. The role of infection on wound healing. Surg Gynecol Obstet 1974; 138: 693-700. 33. Levenson SM, Kan-Gruber D, Gruber C, Molnar J, Seifter E. Wound healing accelerated by Staphylococcus aureus. Arch Surg 1983; 118: 310-20. [CrossRef] 34. Traeger T, Koerner P, Kessler W, Cziupka K, Diedrich S, Busemann A, et al. Colon Ascendens Stent Peritonitis (CASP) - a Standardized Model for Polymicrobial Abdominal Sepsis. J Vis Exp 2010; 46: doi: 10.3791/2299. [CrossRef] 35. Buras JA, Holzmann B, Sitkovsky M. Animal Models of sepsis: setting the stage. Nat Rev Drug Discov 2005; 4: 854-65. [CrossRef] 36. Corral CJ, Siddiqui A, Wu L, Farrell CL, Lyons D, Mustoe TA. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch Surg 1999; 134: 200-5. [CrossRef] 37. Serin ve Bayramiçli M. Experimental Rat Flap Models 2018; Available from: https://www.intechopen.com/books/issues-in-flap-surgery/experimental-rat-flap-models [CrossRef] 38. Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plastic Surg 2003; 30: 37-45. [CrossRef] 39. Brown RL, Breeden MP, Greenhalgh DG. PDGF and TGF-alpha act synergistically to improve wound healing in the genetically diabetic mouse. J Surg Res 1994; 56: 562-70. [CrossRef] 40. Tsuboi R, Rifkin DB. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J Exp Med 1990; 172: 245-51. [CrossRef] 41. Goodson WH III, Hunt TK. Wound collagen accumulation in obese hyperglycemic mice. Diabetes 1986; 35: 491-5. [CrossRef] 42. Rerup CC. Drugs producing diabetes through damage of insulin secreting cells. Pharmacol Rev 1970; 22: 485-518. 43. Daniel RK, Wheatley DC, Priest DL. Pressure sores and paraplegia: an experimental model. Ann Plast Surg 1985; 15: 41-9. [CrossRef] 44. Hyodo A, Reger SI, Negami S, Kambic H, Reyes E, Browne EZ. Evaluation of a pressure sore model using monoplegic pigs. Plast Reconstr Surg 1995; 96: 421-8. [CrossRef] 45. Peirce SM, Skalak TC, Rodeheaver GT. Ischemia reperfusion injury in chronic pressure ulcer formation: A skin model in the rat. Wound Rep Reg 2000; 8: 68-76. [CrossRef] 46. Reid RR, Sull AC, Mogford JE, Roy N, Mustoe TA. A novel murine model of cyclical cutaneous ischemia-reperfusion injury. J Surg Res 2004; 116: 172-80. [CrossRef] 47. Shaheen A. Comprehensive review of keloid formation. Clin Res Dermatol 2017; 4: 1-18. [CrossRef] 48. Van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol 2014; 23: 382-6. [CrossRef] 49. Laato M, Heino J, Kahari VM, Niinikoski J, Gerdin B. Epidermal growth factor (EGF) prevents methylprednisolone-induced inhibition of wound healing. J Surg Res 1989; 47: 354-9. [CrossRef] 50. Reinisch JF, Puckett CL. Management of radiation wounds. Surg Clin N Am 1984; 64: 795-802. [CrossRef] 51. Somasundaram K, Prathrap K. Intra-uterine healing of skin wounds in rabbit foetuses. J Pathol 1970; 100: 81-6. [CrossRef] 52. Whitby DJ, Ferguson MW. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 1991; 112: 651-68. 53. Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg 1991; 213: 292-6. [CrossRef] 54. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 1992; 114: 253-9. 55. Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC. Longaker MTScarless wound healing: Transitioning from fetal research to regenerative healing. Wiley Interdiscip Rev Dev Biol 2018; 7: doi: 10.1002/wdev.309. [CrossRef] 56. Wong JW, Gallant-Behm C, Wiebe C, Mak K, Hart DA, Larjava H, et al. Wound healing in oral mucosa results in reduced scar formation as compared with skin: Evidence from the red Duroc pig model and humans. Wound Repair Regen 2009; 17: 717-29. [CrossRef] 57. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci 2016; 129: 4321-7. [CrossRef] 58. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther 2017; 34: 599-610. [CrossRef]

Wound Repair and Experimental Wound Models

Year 2019, Volume: 9 Issue: 3, 130 - 137, 01.12.2019

Abstract

Wound healing is the restoration of distorted cellular, biochemical and systemic processes with trauma to normalization with new tissue formation. Acute wounds are wounds in which the tissue can return to normal anatomical and functional integrity over a period of time, and treatment is relatively problem-free. Chronic wounds, on the other hand, are wounds in which anatomic and functional integrity cannot be achieved as a result of disruption of wound healing processes due to an underlying disease. Chronic wounds are a major health problem that affects a significant proportion of the population and reduces the quality of life. Moreover, wound care creates a significant financial burden on health systems in developed countries. With the technological advances in recent years, significant progress has been made in terms of drugs and medical devices used in wound treatment, however, despite these developments, experimental research in the field of wound therapy remains important due to the complex structure in wound healing processes and patient diversity. In this review, basic concepts and current applications used in wound research are discussed focusing on wound healing process and experimental wound models.

Cite this article as: Baktır G. Wound Repair and Experimental Wound Models. Experimed 2019; 9(3): 130-7.

References

  • 1 Mercandetti M, Cohen AJ. Wound healing and repair. Available from: https://emedicine.medscape.com/article/1298129-overview 2. Macdonald J, Asiedu K. WAWLC: World Alliance for Wound and Lymphedema Care. Wounds 2010; 22: 55-9. 3. Rajpaul K. Biofilm in wound care. Br J Community Nurs 2015; Suppl Wound Care: S6, S8, S10-1. [CrossRef] 4. Larsen JA, Overstreet J. Pulsed radio frequency energy in the treatment of complex diabetic foot wounds: two cases. J Wound Ostomy Continence Nurs 2008; 35: 523-7. [CrossRef] 5. Öztopalan DF, Işık R, Durmuş AS. Yara iyileşmesinde büyüme faktörleri ve sitokinlerin rolü. Dicle Üniv Vet Fak Derg 2017; 10: 83-8. 6. Coşkun Ö, Uzun G, Dal D ve ark. Kronik yarada tedavi yaklaşımları. Gülhane Tıp Derg 2016; 58: 207-28. 7. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2010; 18: 139-53. [CrossRef] 8. Greenhalgh DG. Models of wound healing. J Burn Care Rehabil 2005; 26: 293-305. [CrossRef] 9. Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 1995; 98: 827-33. [CrossRef] 10. Aydın OE, Tan Ö, Çinal H, Kara M, Çakmak MA. Deneysel Yara Modelleri. Turkiye Klinikleri J Plast Surg-Special Topics 2015; 4: 5-11. 11. Strande LF, Foley ST, Doolin EJ, Hewitt CW. In vitro bioartificial skin culture model of tissue rejection and inflammatory/ immune mechanisms. Transplant Proc 1997; 29: 2118-9. [CrossRef] 12. Emanualsson P, Kratz G. Characterization of a new in vitro burn wound model. Burns 1997; 23: 32-6. [CrossRef] 13. Nandi S, Brown AC. Characterizing cell migration within three-dimensional in vitro wound environments. J Vis Exp 2017; 126: doi: 10.3791/56099. [CrossRef] 14. Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen 2004; 12: 591-9. [CrossRef] 15. Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen 2001; 9: 66-76. [CrossRef] 16. Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol 2011; doi: 10.1155/2011/969618. [CrossRef] 17. Reid RR, Said HK, Mogford JE, Mustoe TA. The future of wound healing: Pursuing surgical models in transgenic and knockout mice. J Am Coll Surg 2004; 199: 578-85. [CrossRef] 18. Diegelmann RF, Lindblad WJ Cohen IK. A subcutaneous implant for wound healing studies in humans. J Surg Res 1986; 40: 229-37. [CrossRef] 19. Kurkinen M, Vaheri A, Roberts PJ, Stenman S. Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Med 1980; 43: 47-51. [CrossRef] 20. Sprugel KH, Mcpherson JM, Clowes AW, et al. Effects of growth factors in vivo: I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 1987; 129: 601-13. 21. Viljanto J. Cellstick: a device for wound healing studies in man. Description of the method. J Surg Res 1976; 20: 115-9. [CrossRef] 22. Diegelmann RF, Kim JC, Lindblad WJ, Smith TC, Harris TM, Cohen IK. Collection of leukocytes, fibroblasts, and collagen within an implantable reservoir tube during tissue repair. J Leukocyte Biol 1987; 42: 667-72. [CrossRef] 23. Schilling JA, Joel W, Shurby HM. Wound healing: a comparative study of the histochemical changes in granulation tissue contained steel wire mesh cylinders and polyvinyl sponges. Surgery 1959; 46: 702-10. 24. Hunt TK, Twomey P, Zedrefeldt B, Dunphy JE. Respiratory gas tensions and pH in healing wounds. Am J Surg 1967; 114: 302-7. [CrossRef] 25. Wong VW, Beasley B, Zepeda J, Dauskardt RH, Yock PG, Longaker MT, et al. A Mechanomodulatory Device to Minimize Incisional Scar Formation. Adv Wound Care (New Rochelle) 2013; 2: 185-94. [CrossRef] 26. Kilpadi DV, Lessing C, Derrick K. Healed porcine incisions previously treated with a surgical incision management system: mechanical, histomorphometric, and gene expression properties. Aesthetic Plast Surg 2014; 38: 767-78. [CrossRef] 27. Galiano RD, Michaels VJ, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004; 12: 485-92. [CrossRef] 28. Greenhalgh DG, Gamelli RL. Immunomodulators and wound healing. J Trauma 1987; 27: 510-4. [CrossRef] 29. Auerbach LJ, Galvez MG, De Clerck BK, Glotzbach J, Wehner MR, Chang EI, et al. A novel mouse model for frostbite injury. Wilderness Environ Med 2013; 24: 94-104. [CrossRef] 30. Levenson SM, Gruber CA, Rettura G, Gruber DK, Demetriou AA, Seifter E. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing. Ann Surg 1984; 200: 494-512. [CrossRef] 31. Alvarez OM, Gilbreath RL. Thiamine influence on collagen during the granulation of skin wounds. J Surg Res 1982; 32: 24-31. [CrossRef] 32. DeHaan BB, Ellis H, Wilks M. The role of infection on wound healing. Surg Gynecol Obstet 1974; 138: 693-700. 33. Levenson SM, Kan-Gruber D, Gruber C, Molnar J, Seifter E. Wound healing accelerated by Staphylococcus aureus. Arch Surg 1983; 118: 310-20. [CrossRef] 34. Traeger T, Koerner P, Kessler W, Cziupka K, Diedrich S, Busemann A, et al. Colon Ascendens Stent Peritonitis (CASP) - a Standardized Model for Polymicrobial Abdominal Sepsis. J Vis Exp 2010; 46: doi: 10.3791/2299. [CrossRef] 35. Buras JA, Holzmann B, Sitkovsky M. Animal Models of sepsis: setting the stage. Nat Rev Drug Discov 2005; 4: 854-65. [CrossRef] 36. Corral CJ, Siddiqui A, Wu L, Farrell CL, Lyons D, Mustoe TA. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch Surg 1999; 134: 200-5. [CrossRef] 37. Serin ve Bayramiçli M. Experimental Rat Flap Models 2018; Available from: https://www.intechopen.com/books/issues-in-flap-surgery/experimental-rat-flap-models [CrossRef] 38. Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plastic Surg 2003; 30: 37-45. [CrossRef] 39. Brown RL, Breeden MP, Greenhalgh DG. PDGF and TGF-alpha act synergistically to improve wound healing in the genetically diabetic mouse. J Surg Res 1994; 56: 562-70. [CrossRef] 40. Tsuboi R, Rifkin DB. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J Exp Med 1990; 172: 245-51. [CrossRef] 41. Goodson WH III, Hunt TK. Wound collagen accumulation in obese hyperglycemic mice. Diabetes 1986; 35: 491-5. [CrossRef] 42. Rerup CC. Drugs producing diabetes through damage of insulin secreting cells. Pharmacol Rev 1970; 22: 485-518. 43. Daniel RK, Wheatley DC, Priest DL. Pressure sores and paraplegia: an experimental model. Ann Plast Surg 1985; 15: 41-9. [CrossRef] 44. Hyodo A, Reger SI, Negami S, Kambic H, Reyes E, Browne EZ. Evaluation of a pressure sore model using monoplegic pigs. Plast Reconstr Surg 1995; 96: 421-8. [CrossRef] 45. Peirce SM, Skalak TC, Rodeheaver GT. Ischemia reperfusion injury in chronic pressure ulcer formation: A skin model in the rat. Wound Rep Reg 2000; 8: 68-76. [CrossRef] 46. Reid RR, Sull AC, Mogford JE, Roy N, Mustoe TA. A novel murine model of cyclical cutaneous ischemia-reperfusion injury. J Surg Res 2004; 116: 172-80. [CrossRef] 47. Shaheen A. Comprehensive review of keloid formation. Clin Res Dermatol 2017; 4: 1-18. [CrossRef] 48. Van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol 2014; 23: 382-6. [CrossRef] 49. Laato M, Heino J, Kahari VM, Niinikoski J, Gerdin B. Epidermal growth factor (EGF) prevents methylprednisolone-induced inhibition of wound healing. J Surg Res 1989; 47: 354-9. [CrossRef] 50. Reinisch JF, Puckett CL. Management of radiation wounds. Surg Clin N Am 1984; 64: 795-802. [CrossRef] 51. Somasundaram K, Prathrap K. Intra-uterine healing of skin wounds in rabbit foetuses. J Pathol 1970; 100: 81-6. [CrossRef] 52. Whitby DJ, Ferguson MW. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 1991; 112: 651-68. 53. Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg 1991; 213: 292-6. [CrossRef] 54. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 1992; 114: 253-9. 55. Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC. Longaker MTScarless wound healing: Transitioning from fetal research to regenerative healing. Wiley Interdiscip Rev Dev Biol 2018; 7: doi: 10.1002/wdev.309. [CrossRef] 56. Wong JW, Gallant-Behm C, Wiebe C, Mak K, Hart DA, Larjava H, et al. Wound healing in oral mucosa results in reduced scar formation as compared with skin: Evidence from the red Duroc pig model and humans. Wound Repair Regen 2009; 17: 717-29. [CrossRef] 57. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci 2016; 129: 4321-7. [CrossRef] 58. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther 2017; 34: 599-610. [CrossRef]
There are 1 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Gül Baktır

Publication Date December 1, 2019
Submission Date October 14, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

Vancouver Baktır G. Wound Repair and Experimental Wound Models. Experimed. 2019;9(3):130-7.