Research Article
BibTex RIS Cite

Rifampisinin Nöronal Sağkalım Üzerine Etkileri

Year 2019, Volume: 9 Issue: 3, 138 - 142, 01.12.2019

Abstract

Nörodejeneratif hastalıklar, merkezi sinir siteminde yanlış katlanmış proteinlerin çözünmeyen agregatlarının oluşumu ile karakterizedir. Bunlara örnek olarak; Alzheimer hastalığında β-amyloid protein ve Parkinson hastalığında α-sinüklein oluşumu verilebilir. Parkinson hastalığında α-sinüklein agregasyonuna ek olarak, oksidatif stress, mitokondri fonksiyon bozukluğu, inflamatuvar cevap, apoptoz gibi mekanizmaların hastalık sürecine katıldığı bilinmektedir. Bu hastalıkların altında yatan mekanizmalar tam olarak bilinmediği için, hastalığa ilişkin geliştirilen ilaçlar, hastalığı iyileştirmekten çok, hastalığın seyrini yavaşlatma eğilimindedir. Rifampisin insanlar tarafından sıkça kullanılan bir antibiyotiktir ve ağız yoluyla alındıktan sonra beyne kolaylıkla penetre olmaktadır. Rifampisinin in vivo ve in vitro hastalık modellerinde mitokondriyal oksidatif stresi baskıladığı, α-sinüklein fibrillerini ayrıştırdığı, inflamasyonu inhibe ettiğini gösteren çok sayıda çalışma mevcuttur. Biz bu çalışmada, rifampisinin nöronal korunumu üzerine raporlanan çalışmaları ve Parkinson hastalığı’nın patofizyolojik mekanizmaları üzerine rifampisinin etkilerini derledik.

Cite this article as: Yurtsever İ, Emekli Alturfan E. The Effects of Rifampicin on Neuronal Survival. Experimed 2019; 9(3): 138-42.

References

  • 1. Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm 2014; 121: 849-59. [CrossRef] 2. Giráldez-Pérez R, Antolín-Vallespín M, Muñoz M, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun 2014; 2: 176. doi: 10.1186/s40478-014-0176-9. [CrossRef] 3. Blesa J, Trigo-Damas I, Quiroga-Varela A and Jackson-Lewis V R. Oxidative stress and Parkinson’s disease. Front Neuroanat 2015; 9: https://doi.org/10.3389/fnana.2015.00091 [CrossRef] 4. Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist 2016; 22: 266-77. [CrossRef] 5. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 2015; 125: 717-25. [CrossRef] 6. Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem 2016; 137: 673-86. [CrossRef] 7. Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep 2014; 10: 1793-9. [CrossRef] 8. Jing X, Shi Q, Bi W, Zeng Z, Liang Y, Wu X, et al. Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2alpha-ATF4 pathway. PLoS One 2014; 9: doi: 10.1371/journal.pone.0092110.[CrossRef] 9. Xu J, Wei C, Xu C, Bennett M C, Zhang G, Li F, et al. Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-synuclein multimer. Brain Res 2007; 1139: 220-5. [CrossRef] 10. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, et al. Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 2011; 1395: 12-20. [CrossRef] 11. Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson’s disease: genes, environment, and mitochondria. Parkinsonism Relat Disord 2003; 9 (Suppl 2): S59-S64. [CrossRef] 12. Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 2005; 134: 220-5. [CrossRef] 13. Watanabe Y, Himeda T, Araki T. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Med Sci Monit 2005; 11: 17-23. 14. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002; 22: 7006-15. [CrossRef] 15. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 2008; 1147: 37-52. [CrossRef] 16. Tretter L, Sipos I, Adam-Vizi V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem Res 2004; 29: 569-77. [CrossRef] 17. Zhu J, Chu CT. Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis 2010; 20 (Suppl 2): S325-S34. [CrossRef] 18. Tobo’n-Velasco JC, Carmona-Aparicio L, Ali SF, Santamarı’a A. Biomarkers of cell damage induced by oxidative stress in Parkinson’s disease and related models. Cent Nerv Syst Agents Med Chem 2010; 10: 278-86. [CrossRef] 19. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv 2005; 5: 94-111. [CrossRef] 20. Beal MF. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992; 31: 119-30. [CrossRef] 21. Adams JD Jr, Chang ML, Klaidman L. Parkinson’s disease-redox mechanisms. Curr Med Chem 2001; 8: 809-14. [CrossRef] 22. Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 1991; 99: 465-71. [CrossRef] 23. Xu B, Tang X, Chen J, Wu H, Chen W, Chen L. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. Acta Pharmacol Sin 2019; doi: 10.1038/s41401-019-0266-0. [CrossRef] 24. Oida Y, Kitaichi K, Nakayama H, Ito Y, Fujimoto Y, Shimazawa M, Nagai H, Hara H. Rifampicin attenuates the MPTP-induced neurotoxicity in mouse brain. Brain Res 2006; 1082: 196- 204. [CrossRef] 25. Bo¨ttcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, et al. Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 2000; 181: 2095-8. [CrossRef] 26. Chen S, Sun Y, Zeng Z, Tao E. Rifampicin inhibits apoptosis in rotenone-induced differentiated PC12 cells by ameliorating mitochondrial oxidative stress. Neural Regen Res 2010; 5: 251-6. 27. Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease. J Neurochem. 2018; 144: 691-709. [CrossRef] 28. Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated cocultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep 2014; 10: 1793-9. [CrossRef] 29. Yang S, Xia C, Li S, Du L, Zhang L, Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol 2014; 3: 63-71. [CrossRef] 30. Bi W, Jing X, Zhu L, Liang Y, Liu J, Yang L, et al. Inhibition of 26S protease regulatory subunit 7 (MSS1) suppresses neuroinflammation. PLoS One 2012; 7: doi: 10.1371/journal.pone.0036142. [CrossRef] 31. Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, et al. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 2017; 63: 137-45. [CrossRef] 32. Giordano S, Dodson M, Ravi S, Redmann M, Ouyang X, Darley Usmar VM, et al. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. J Neurochem 2014; 131: 625-33. [CrossRef] 33. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 2007; 120: 4155-66. [CrossRef] 34. Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996; 55: 259-72. [CrossRef] 35. Martin FL, Williamson SJ, Paleologou KE, Allsop D, El-Agnaf OM. Alpha-synuclein and the pathogenesis of Parkinson’s disease. Protein Pept Lett 2004; 11: 229-37. [CrossRef] 36. Bennett MC. The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 2005; 105: 311-31. [CrossRef] 37. Lee SJ. alpha-Synuclein aggregation: a link between mitochondrial defects and Parkinson’s disease? Antioxid Redox Signal 2003; 3: 337-48. [CrossRef] 38. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJA, Anthony DC. The acute inflammatory response to intranigral-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflamm 2011; 8: doi: 10.1186/1742-2094-8-166. [CrossRef] 39. Acuña L, Hamadat S, Corbalán NS, González-Lizárraga F, Dos-Santos-Pereira M, Rocca J, et al. Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells 2019; 8: doi: 10.3390/cells8080776. [CrossRef] 40. Gustot A, Gallea, JI, Sarroukh R, Celej MS, Ruysschaert J-M, Raussens V. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 2015; 471: 323-33. [CrossRef] 41. Hoffmann A, Ettle B, Bruno A, Kulinich A, Hoffmann AC, von Wittgenstein J, et al. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys Res Commun 2016; 479: 881-6. [CrossRef] 42. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation, and recognition. Nat Rev Mol Cell Biol 2010; 11: 861-71. [CrossRef] 43. Eckermann K. SUMO and Parkinson’s Disease. NeuroMolecular Med 2013; 15: 737-59. [CrossRef] 44. Dohmen RJ. SUMO protein modification. Biochim. Biophys. Acta 2004; 1695, 113-131. [CrossRef] 45. Hay RT. SUMO: a history of modification. Mol Cell 2005; 18: 1-12. [CrossRef] 46. Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127: 580-91. [CrossRef] 47. Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 2010; 64: 195-212. [CrossRef] 48. Luo J, Ashikaga E, Rubin PP, Heimann MJ, Hildick KL, Bishop P, et al. Receptor trafficking and the regulation of synaptic plasticity by SUMO. Neuromolecular Med 2013; 15: 692-706. [CrossRef] 49. Anckar J, Sistonen L. SUMO: getting it on. Biochem Soc Trans 2007; 35: 1409-13. [CrossRef] 50. Henley JM, Craig TJ and Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94: 1249-85. [CrossRef] 51. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-40. [CrossRef] 52. Kim YM, Jang WH, Quezado MM, Oh Y, Chung KC, Junn E, et al. Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J Neurol Sci 2011; 307: 157-61. [CrossRef] 53. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, et al. Sumoylation inhibits a-synuclein aggregation and toxicity. J Cell Biol 2011; 194: 49-60. [CrossRef] 54. Lin D, Jing X, Chen Y, Liang Y, Lei M, Peng S, et al. Rifampicin pre-treatment inhibits the toxicity of rotenone-induced PC12 cells by enhancing sumoylation modification of α-synuclein. Biochem Biophys Res Commun 2017; 485: 23-9. [CrossRef] 55. Konrad P, Stenberg P. Rifampicin quinone is an immunosuppressant, but not rifampicin itself. Clin Immunol Immunopathol 1988; 46: 162-6. [CrossRef] 56. Li J, Zhu M, Rajamani S, Uversky VN, Fink AL. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004; 11: 1513-21. [CrossRef] 57. Bi W, Zhu L, Jing X, Liang Y, Tao E. Rifampicin and Parkinson’s disease. Neurol Sci 2013; 34: 137-41. [CrossRef]

The Effects of Rifampicin on Neuronal Survival

Year 2019, Volume: 9 Issue: 3, 138 - 142, 01.12.2019

Abstract

Neurodegenerative diseases are characterized by the formation of insoluble aggregates of misfolded proteins in the central nervous system. The β-amyloid protein in Alzheimer's disease and α-synuclein formation in Parkinson's disease (PD) may be given as examples. In addition to α-synuclein accumulation in Parkinson's disease, mechanisms such as oxidative stress, dysfunction of mitochondria, inflammation response, and apoptosis are known to be involved in the disease process. Since the mechanisms underlying these diseases are partially known, the drugs developed are intended to slow the disease process rather than cure them. Rifampicin is an antibiotic commonly used in humans and known to easily penetrate into the brain after oral intake. Studies have shown that rifampicin suppresses mitochondrial oxidative stress, eliminates α-synuclein fibrils and inhibits inflammation in in vitro and in vivo disease models. In this study, we reviewed recent studies on the neuronal protection of rifampicin and the effects of rifampicin on the pathophysiological mechanisms of PD.

Cite this article as: Yurtsever İ, Emekli Alturfan E. The Effects of Rifampicin on Neuronal Survival. Experimed 2019; 9(3): 138-42.

References

  • 1. Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm 2014; 121: 849-59. [CrossRef] 2. Giráldez-Pérez R, Antolín-Vallespín M, Muñoz M, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun 2014; 2: 176. doi: 10.1186/s40478-014-0176-9. [CrossRef] 3. Blesa J, Trigo-Damas I, Quiroga-Varela A and Jackson-Lewis V R. Oxidative stress and Parkinson’s disease. Front Neuroanat 2015; 9: https://doi.org/10.3389/fnana.2015.00091 [CrossRef] 4. Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist 2016; 22: 266-77. [CrossRef] 5. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 2015; 125: 717-25. [CrossRef] 6. Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem 2016; 137: 673-86. [CrossRef] 7. Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep 2014; 10: 1793-9. [CrossRef] 8. Jing X, Shi Q, Bi W, Zeng Z, Liang Y, Wu X, et al. Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2alpha-ATF4 pathway. PLoS One 2014; 9: doi: 10.1371/journal.pone.0092110.[CrossRef] 9. Xu J, Wei C, Xu C, Bennett M C, Zhang G, Li F, et al. Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-synuclein multimer. Brain Res 2007; 1139: 220-5. [CrossRef] 10. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, et al. Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 2011; 1395: 12-20. [CrossRef] 11. Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson’s disease: genes, environment, and mitochondria. Parkinsonism Relat Disord 2003; 9 (Suppl 2): S59-S64. [CrossRef] 12. Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 2005; 134: 220-5. [CrossRef] 13. Watanabe Y, Himeda T, Araki T. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Med Sci Monit 2005; 11: 17-23. 14. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002; 22: 7006-15. [CrossRef] 15. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 2008; 1147: 37-52. [CrossRef] 16. Tretter L, Sipos I, Adam-Vizi V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem Res 2004; 29: 569-77. [CrossRef] 17. Zhu J, Chu CT. Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis 2010; 20 (Suppl 2): S325-S34. [CrossRef] 18. Tobo’n-Velasco JC, Carmona-Aparicio L, Ali SF, Santamarı’a A. Biomarkers of cell damage induced by oxidative stress in Parkinson’s disease and related models. Cent Nerv Syst Agents Med Chem 2010; 10: 278-86. [CrossRef] 19. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv 2005; 5: 94-111. [CrossRef] 20. Beal MF. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992; 31: 119-30. [CrossRef] 21. Adams JD Jr, Chang ML, Klaidman L. Parkinson’s disease-redox mechanisms. Curr Med Chem 2001; 8: 809-14. [CrossRef] 22. Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 1991; 99: 465-71. [CrossRef] 23. Xu B, Tang X, Chen J, Wu H, Chen W, Chen L. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. Acta Pharmacol Sin 2019; doi: 10.1038/s41401-019-0266-0. [CrossRef] 24. Oida Y, Kitaichi K, Nakayama H, Ito Y, Fujimoto Y, Shimazawa M, Nagai H, Hara H. Rifampicin attenuates the MPTP-induced neurotoxicity in mouse brain. Brain Res 2006; 1082: 196- 204. [CrossRef] 25. Bo¨ttcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, et al. Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 2000; 181: 2095-8. [CrossRef] 26. Chen S, Sun Y, Zeng Z, Tao E. Rifampicin inhibits apoptosis in rotenone-induced differentiated PC12 cells by ameliorating mitochondrial oxidative stress. Neural Regen Res 2010; 5: 251-6. 27. Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease. J Neurochem. 2018; 144: 691-709. [CrossRef] 28. Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated cocultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep 2014; 10: 1793-9. [CrossRef] 29. Yang S, Xia C, Li S, Du L, Zhang L, Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol 2014; 3: 63-71. [CrossRef] 30. Bi W, Jing X, Zhu L, Liang Y, Liu J, Yang L, et al. Inhibition of 26S protease regulatory subunit 7 (MSS1) suppresses neuroinflammation. PLoS One 2012; 7: doi: 10.1371/journal.pone.0036142. [CrossRef] 31. Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, et al. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 2017; 63: 137-45. [CrossRef] 32. Giordano S, Dodson M, Ravi S, Redmann M, Ouyang X, Darley Usmar VM, et al. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. J Neurochem 2014; 131: 625-33. [CrossRef] 33. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 2007; 120: 4155-66. [CrossRef] 34. Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996; 55: 259-72. [CrossRef] 35. Martin FL, Williamson SJ, Paleologou KE, Allsop D, El-Agnaf OM. Alpha-synuclein and the pathogenesis of Parkinson’s disease. Protein Pept Lett 2004; 11: 229-37. [CrossRef] 36. Bennett MC. The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 2005; 105: 311-31. [CrossRef] 37. Lee SJ. alpha-Synuclein aggregation: a link between mitochondrial defects and Parkinson’s disease? Antioxid Redox Signal 2003; 3: 337-48. [CrossRef] 38. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJA, Anthony DC. The acute inflammatory response to intranigral-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflamm 2011; 8: doi: 10.1186/1742-2094-8-166. [CrossRef] 39. Acuña L, Hamadat S, Corbalán NS, González-Lizárraga F, Dos-Santos-Pereira M, Rocca J, et al. Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells 2019; 8: doi: 10.3390/cells8080776. [CrossRef] 40. Gustot A, Gallea, JI, Sarroukh R, Celej MS, Ruysschaert J-M, Raussens V. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 2015; 471: 323-33. [CrossRef] 41. Hoffmann A, Ettle B, Bruno A, Kulinich A, Hoffmann AC, von Wittgenstein J, et al. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys Res Commun 2016; 479: 881-6. [CrossRef] 42. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation, and recognition. Nat Rev Mol Cell Biol 2010; 11: 861-71. [CrossRef] 43. Eckermann K. SUMO and Parkinson’s Disease. NeuroMolecular Med 2013; 15: 737-59. [CrossRef] 44. Dohmen RJ. SUMO protein modification. Biochim. Biophys. Acta 2004; 1695, 113-131. [CrossRef] 45. Hay RT. SUMO: a history of modification. Mol Cell 2005; 18: 1-12. [CrossRef] 46. Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127: 580-91. [CrossRef] 47. Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 2010; 64: 195-212. [CrossRef] 48. Luo J, Ashikaga E, Rubin PP, Heimann MJ, Hildick KL, Bishop P, et al. Receptor trafficking and the regulation of synaptic plasticity by SUMO. Neuromolecular Med 2013; 15: 692-706. [CrossRef] 49. Anckar J, Sistonen L. SUMO: getting it on. Biochem Soc Trans 2007; 35: 1409-13. [CrossRef] 50. Henley JM, Craig TJ and Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94: 1249-85. [CrossRef] 51. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-40. [CrossRef] 52. Kim YM, Jang WH, Quezado MM, Oh Y, Chung KC, Junn E, et al. Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J Neurol Sci 2011; 307: 157-61. [CrossRef] 53. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, et al. Sumoylation inhibits a-synuclein aggregation and toxicity. J Cell Biol 2011; 194: 49-60. [CrossRef] 54. Lin D, Jing X, Chen Y, Liang Y, Lei M, Peng S, et al. Rifampicin pre-treatment inhibits the toxicity of rotenone-induced PC12 cells by enhancing sumoylation modification of α-synuclein. Biochem Biophys Res Commun 2017; 485: 23-9. [CrossRef] 55. Konrad P, Stenberg P. Rifampicin quinone is an immunosuppressant, but not rifampicin itself. Clin Immunol Immunopathol 1988; 46: 162-6. [CrossRef] 56. Li J, Zhu M, Rajamani S, Uversky VN, Fink AL. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004; 11: 1513-21. [CrossRef] 57. Bi W, Zhu L, Jing X, Liang Y, Tao E. Rifampicin and Parkinson’s disease. Neurol Sci 2013; 34: 137-41. [CrossRef]
There are 1 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

İlknur Yurtsever This is me

Ebru Emekli Alturfan This is me

Publication Date December 1, 2019
Submission Date October 24, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

Vancouver Yurtsever İ, Emekli Alturfan E. The Effects of Rifampicin on Neuronal Survival. Experimed. 2019;9(3):138-42.