Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 2, 94 - 102, 22.08.2022
https://doi.org/10.26650/experimed.1128979

Abstract

References

  • 1. Alrafiah A. Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation follow-ing high-fat diet supplementation. Biomolecules 2021; 11(2): 165. [CrossRef] google scholar
  • 2. Farkhondeh T, Samarghandian S, Shahri AMP, Samini F. The neu-roprotective effects of thymoquinone: A review. Dose Response 2018; 16: 1559325818761455. [CrossRef] google scholar
  • 3. Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, et al. Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals (Basel, Switzerland) 2022; 15(4): 408. [CrossRef] google scholar
  • 4. Isaev NK, Chetverikov NS, Stelmashook EV, Genrikhs EE, Khaspe-kov LG, Illarioshkin SN. Thymoquinone as a potential neuropro-tector in acute and chronic forms of cerebral pathology. Biochem-istry. Biokhimiia 2020; 85(2): 167-76. [CrossRef] google scholar
  • 5. Cascella M, Bimonte S, Barbieri A, Del Vecchio V, Muzio MR, Vitale A, et al. Dissecting the potential roles of nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer's Disease. Front Aging Neurosci 2018; 10: 16. [CrossRef] google scholar
  • 6. Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neuro-degenerative diseases. CNS Neurol Disord Drug Targets 2018; 17: 412-20. [CrossRef] google scholar
  • 7. Khazdair MR. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol 2015; 841823. [CrossRef] google scholar
  • 8. Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxida-tive stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci 2018; 12: 114. [CrossRef] google scholar
  • 9. Azizi SA. Role of the cerebellum in the phenotype of neurodegen-erative diseases: Mitigate or exacerbate? Neurosci Lett 2021; 760; 136105. [CrossRef] google scholar
  • 10. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, et al. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain 2018; 141(1): 37-47. [CrossRef] google scholar
  • 11. Wu T, Hallett M. The cerebellum in Parkinson's disease. Brain 2013; 136: 696-709. [CrossRef] google scholar
  • 12. Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 2004; 127(Pt 12): 2657-71. [CrossRef] google scholar
  • 13. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, et al. Thy-moquinone prevents 0-amyloid neurotoxicity in primary cultured cerebellar granule neurons. Cell Mol Neurobiol 2013; 33(8): 115969. [CrossRef] google scholar
  • 14. Rakib F, Al-Saad K, Ustaoglu SG, Ullah E, Mall R, Thompson R, et al. Fourier transform infrared imaging-a novel approach to monitor bio molecular changes in subacute mild traumatic brain injury. Brain Sci 2021; 11(7): 918. [CrossRef] google scholar
  • 15. Ustaoglu SG, Ali M, Rakib F, Blezer E, Van Heijningen CL, Dijkhuizen RM, et al. Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Sci Rep 2021; 11(1): 12468. [CrossRef] google scholar
  • 16. Ustaoglu SG, Evis Z, Ilbay G, Boskey A, Severcan F. Side-effects of convulsive seizures and anti-seizure therapy on bone in a rat model of epilepsy. Appl Spectrosc 2018; 72(5): 689-705. [CrossRef] google scholar
  • 17. Garip S, Sahin D, Severcan F. Epileptic seizures-induced structural and functional changes in rat femur and tibia bone tissues: An FTIR imaging Study. J Biomed Opt 2013; 18(11): 111409. [CrossRef] google scholar
  • 18. Garip S, Severcan F. Determination of simvastatin-induced chang-es in bone composition and structure by Fourier transform infra-red spectroscopy in rat animal model. J Pharm Biomed Anal 2010; 52(4): 580-8. [CrossRef] google scholar
  • 19. Garip S, Bayari SH, Severcan M, Abbas S, Lednev IK, Severcan F. Structural effects of simvastatin on liver rat [corrected] tissue: Fou-rier transform infrared and Raman microspectroscopic studies. J Biomed Opt 2016; 21(2): 25008. [CrossRef] google scholar
  • 20. Kucuk Baloglu F, Garip S, Heise S, Brockmann G, Severcan F. FTIR imaging of structural changes in visceral and subcutaneous ad-iposity and brown to white adipocyte transdifferentiation. The Analyst 2015; 140(7): 2205-14. [CrossRef] google scholar
  • 21. Shao Y, Feng Y, Xie Y, Luo Q, Chen L, Li B, et al. Protective effects of thymoquinone against convulsant activity induced by lithium-pi-locarpine in a model of status epilepticus. Neurochem Res 2016; 41(12): 3399-406. [CrossRef] google scholar
  • 22. Aquib M, Najmi AK, Akhtar M. Antidepressant effect of thymo-quinone in animal models of depression. Drug Res (Stuttg) 2015; 65(9): 490-4. [CrossRef] google scholar
  • 23. Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch WD. Thy-moquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 2014; 66(1): 13-7. [CrossRef] google scholar
  • 24. Demir P, Akkas SB, Severcan M, Zorlu F, Severcan F. Ionizing radia-tion induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc 2015; 69(1): 154-64. [CrossRef] google scholar
  • 25. Cakmak-Arslan G, Emir S, Goc-Rasgele P, Kekecoglu M. Investiga-tion of the toxic effects of rhododendron honey on mouse cardiac muscle tissue lipids at molecular level. Kafkas Univ Vet Fak Derg 2020; 26(2): 287-94. google scholar
  • 26. Yang W, Shi H, Zhang J., Shen Z, Zhou G, Hu M. Effects of the du-ration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids Health Dis 2017; 16: 26. [CrossRef] google scholar
  • 27. Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res 2014; 103(3): 405-13. [CrossRef] google scholar
  • 28. Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cogni-tion in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A: 22-36. [CrossRef] google scholar
  • 29. Vesga-Jimenez DJ, Martin C, Barreto GE, Aristizabal-Pachon AF, Pinzon A, Gonzalez J. Fatty acids: An insight into the pathogene-sis of neurodegenerative diseases and therapeutic potential. Int J Mol Sci 2022; 23(5): 2577. [CrossRef] google scholar
  • 30. Akgül B, Aycan İÖ, Hidişoğlu E, Afşar E, Yıldırım S, Tanrıöver G, et al. Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. Daru 2021; 29(1): 85-99. [CrossRef] google scholar
  • 31. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuro-protective effect of thymoquinone in acrylamide-induced neuro-toxicity in Wistar rats. Iran J Basic Med Sci 2014; 17(12): 1007-11. google scholar
  • 32. Üstün N, Aras M, Özgür T, Bayraktar HS, Sefil F, Özden R, et al. Thy-moquinone attenuates trauma induced spinal cord damage in an animal model. Ulus Travma Acil Cerrahi Derg 2014; 20(5): 328-32. [CrossRef] google scholar
  • 33. Cordeiro Y, Macedo B, Silva JL, Gomes M. Pathological implications of nucleic acid interactions with proteins associated with neuro-degenerative diseases. Biophys Rev 2014; 6(1): 97-110. [CrossRef] google scholar
  • 34. Abukhader MM. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J Pharm Sci 2012; 74(3): 195-200. [CrossRef] google scholar

Effects of Thymoquinone (TQ) on the Molecular Structure and Total Antioxidant Capacity of Cerebellum Tissue of Healthy Rats

Year 2022, Volume: 12 Issue: 2, 94 - 102, 22.08.2022
https://doi.org/10.26650/experimed.1128979

Abstract

Objective: The neuroprotective effects of thymoquinone (TQ), the active compound of Nigella sativa, have been reported in accordance with the anti-inflammatory and antioxidant features of this drug. It has been suggested that the cerebellum plays a considerable role in neurodegenerative processes. In the current study, the possible effects of TQ on the structure and composition of cerebellum tissues and its total antioxidant capacity were studied dose-dependently.

Materials and Methods: Fifteen adult Long Evans female rats were divided into groups as follows: G1: Control, G2: 10 mg/kg TQ treatment, G3: 20 mg/kg TQ treatment. TQ was injected into the rats intraperitoneally for two weeks. The control group only received corn oil used for the dissolving of TQ. Fourier-transform infrared spectroscopy (FTIR) studies and total protein, and antioxidant capacity measurements were carried out with cerebellum tissues which were removed following the decapitation of rats.

Results and Conclusion: 10 mg/kg TQ treatment improved the saturated and unsaturated lipid and protein content in addition to decreasing nucleic acid content and lipid peroxidation and increasing the total antioxidant capacity of cerebellum tissues. However, 20 mg/kg TQ treatment did not have any significant effect.

References

  • 1. Alrafiah A. Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation follow-ing high-fat diet supplementation. Biomolecules 2021; 11(2): 165. [CrossRef] google scholar
  • 2. Farkhondeh T, Samarghandian S, Shahri AMP, Samini F. The neu-roprotective effects of thymoquinone: A review. Dose Response 2018; 16: 1559325818761455. [CrossRef] google scholar
  • 3. Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, et al. Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals (Basel, Switzerland) 2022; 15(4): 408. [CrossRef] google scholar
  • 4. Isaev NK, Chetverikov NS, Stelmashook EV, Genrikhs EE, Khaspe-kov LG, Illarioshkin SN. Thymoquinone as a potential neuropro-tector in acute and chronic forms of cerebral pathology. Biochem-istry. Biokhimiia 2020; 85(2): 167-76. [CrossRef] google scholar
  • 5. Cascella M, Bimonte S, Barbieri A, Del Vecchio V, Muzio MR, Vitale A, et al. Dissecting the potential roles of nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer's Disease. Front Aging Neurosci 2018; 10: 16. [CrossRef] google scholar
  • 6. Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neuro-degenerative diseases. CNS Neurol Disord Drug Targets 2018; 17: 412-20. [CrossRef] google scholar
  • 7. Khazdair MR. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol 2015; 841823. [CrossRef] google scholar
  • 8. Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxida-tive stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci 2018; 12: 114. [CrossRef] google scholar
  • 9. Azizi SA. Role of the cerebellum in the phenotype of neurodegen-erative diseases: Mitigate or exacerbate? Neurosci Lett 2021; 760; 136105. [CrossRef] google scholar
  • 10. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, et al. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain 2018; 141(1): 37-47. [CrossRef] google scholar
  • 11. Wu T, Hallett M. The cerebellum in Parkinson's disease. Brain 2013; 136: 696-709. [CrossRef] google scholar
  • 12. Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 2004; 127(Pt 12): 2657-71. [CrossRef] google scholar
  • 13. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, et al. Thy-moquinone prevents 0-amyloid neurotoxicity in primary cultured cerebellar granule neurons. Cell Mol Neurobiol 2013; 33(8): 115969. [CrossRef] google scholar
  • 14. Rakib F, Al-Saad K, Ustaoglu SG, Ullah E, Mall R, Thompson R, et al. Fourier transform infrared imaging-a novel approach to monitor bio molecular changes in subacute mild traumatic brain injury. Brain Sci 2021; 11(7): 918. [CrossRef] google scholar
  • 15. Ustaoglu SG, Ali M, Rakib F, Blezer E, Van Heijningen CL, Dijkhuizen RM, et al. Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Sci Rep 2021; 11(1): 12468. [CrossRef] google scholar
  • 16. Ustaoglu SG, Evis Z, Ilbay G, Boskey A, Severcan F. Side-effects of convulsive seizures and anti-seizure therapy on bone in a rat model of epilepsy. Appl Spectrosc 2018; 72(5): 689-705. [CrossRef] google scholar
  • 17. Garip S, Sahin D, Severcan F. Epileptic seizures-induced structural and functional changes in rat femur and tibia bone tissues: An FTIR imaging Study. J Biomed Opt 2013; 18(11): 111409. [CrossRef] google scholar
  • 18. Garip S, Severcan F. Determination of simvastatin-induced chang-es in bone composition and structure by Fourier transform infra-red spectroscopy in rat animal model. J Pharm Biomed Anal 2010; 52(4): 580-8. [CrossRef] google scholar
  • 19. Garip S, Bayari SH, Severcan M, Abbas S, Lednev IK, Severcan F. Structural effects of simvastatin on liver rat [corrected] tissue: Fou-rier transform infrared and Raman microspectroscopic studies. J Biomed Opt 2016; 21(2): 25008. [CrossRef] google scholar
  • 20. Kucuk Baloglu F, Garip S, Heise S, Brockmann G, Severcan F. FTIR imaging of structural changes in visceral and subcutaneous ad-iposity and brown to white adipocyte transdifferentiation. The Analyst 2015; 140(7): 2205-14. [CrossRef] google scholar
  • 21. Shao Y, Feng Y, Xie Y, Luo Q, Chen L, Li B, et al. Protective effects of thymoquinone against convulsant activity induced by lithium-pi-locarpine in a model of status epilepticus. Neurochem Res 2016; 41(12): 3399-406. [CrossRef] google scholar
  • 22. Aquib M, Najmi AK, Akhtar M. Antidepressant effect of thymo-quinone in animal models of depression. Drug Res (Stuttg) 2015; 65(9): 490-4. [CrossRef] google scholar
  • 23. Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch WD. Thy-moquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 2014; 66(1): 13-7. [CrossRef] google scholar
  • 24. Demir P, Akkas SB, Severcan M, Zorlu F, Severcan F. Ionizing radia-tion induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc 2015; 69(1): 154-64. [CrossRef] google scholar
  • 25. Cakmak-Arslan G, Emir S, Goc-Rasgele P, Kekecoglu M. Investiga-tion of the toxic effects of rhododendron honey on mouse cardiac muscle tissue lipids at molecular level. Kafkas Univ Vet Fak Derg 2020; 26(2): 287-94. google scholar
  • 26. Yang W, Shi H, Zhang J., Shen Z, Zhou G, Hu M. Effects of the du-ration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids Health Dis 2017; 16: 26. [CrossRef] google scholar
  • 27. Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res 2014; 103(3): 405-13. [CrossRef] google scholar
  • 28. Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cogni-tion in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A: 22-36. [CrossRef] google scholar
  • 29. Vesga-Jimenez DJ, Martin C, Barreto GE, Aristizabal-Pachon AF, Pinzon A, Gonzalez J. Fatty acids: An insight into the pathogene-sis of neurodegenerative diseases and therapeutic potential. Int J Mol Sci 2022; 23(5): 2577. [CrossRef] google scholar
  • 30. Akgül B, Aycan İÖ, Hidişoğlu E, Afşar E, Yıldırım S, Tanrıöver G, et al. Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. Daru 2021; 29(1): 85-99. [CrossRef] google scholar
  • 31. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuro-protective effect of thymoquinone in acrylamide-induced neuro-toxicity in Wistar rats. Iran J Basic Med Sci 2014; 17(12): 1007-11. google scholar
  • 32. Üstün N, Aras M, Özgür T, Bayraktar HS, Sefil F, Özden R, et al. Thy-moquinone attenuates trauma induced spinal cord damage in an animal model. Ulus Travma Acil Cerrahi Derg 2014; 20(5): 328-32. [CrossRef] google scholar
  • 33. Cordeiro Y, Macedo B, Silva JL, Gomes M. Pathological implications of nucleic acid interactions with proteins associated with neuro-degenerative diseases. Biophys Rev 2014; 6(1): 97-110. [CrossRef] google scholar
  • 34. Abukhader MM. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J Pharm Sci 2012; 74(3): 195-200. [CrossRef] google scholar
There are 34 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Şebnem Garip Ustaoğlu 0000-0001-6577-9578

Birsen Elibol 0000-0002-9462-0862

Publication Date August 22, 2022
Submission Date June 10, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

Vancouver Garip Ustaoğlu Ş, Elibol B. Effects of Thymoquinone (TQ) on the Molecular Structure and Total Antioxidant Capacity of Cerebellum Tissue of Healthy Rats. Experimed. 2022;12(2):94-102.