Research Article
BibTex RIS Cite

Relationship Between BDNF and LPS Levels in the Blood of Patients with Different Neurological Diseases: A Small Cohort Study

Year 2024, Volume: 14 Issue: 2, 92 - 101, 26.08.2024
https://doi.org/10.26650/experimed.1472096

Abstract

Objective: Neuroinflammation and blood-brain barrier (BBB) dysfunction are key factors in various neurological disorders, disrupting brain tissue balance and leading to neuronal death. BBB integrity decline is evident in Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and epilepsy.
Materials and Methods: We measured levels of lipopolysaccharide (LPS), the largest endotoxin, and brain-derived neurotrophic factor (BDNF) in patients' blood plasma and correlated them with biochemical parameters to identify biomarkers for these diseases.
Results: Significant associations were observed between LPS, C-reactive protein (CRP), BDNF, and lactate dehydrogenase (LDH) levels across conditions. LPS was positively correlated with CRP levels in epilepsy (r=0.753, p=0.002). Additionally, BDNF was negatively correlated with CRP in PD patients (r=-0.53, p=0.042). Moreover, a negative correlation was found between LPS and LDH in AD patients (r=-0.521, p=0.047).
Conclusion: Our findings correspond to the etiology of neuroinflammation involved in the pathophysiology of relevant diseases and suggest the potential use of these biomarkers in the early diagnosis and monitoring of neurological diseases, guiding future research towards better patient outcomes and therapies.

Ethical Statement

The study was approved by the Bezmialem Vakif University Research Ethics Committee (07.06.2017, No:12/27; 05/07.2017, No:14/18; 10.07.2020, No:08/117; 10.03.2021, No:3/11) and informed consent was obtained from all participants. In addition, this study was conducted in accordance with the ethical principles described by the Declaration of Helsinki.

References

  • 1. Riessland M. Is cellular senescence of dopaminergic neurons the cause of local inflammation in the midbrain observed in Parkinson’s Disease? J Cell Immun 2020; 2(5): 201-4. google scholar
  • 2. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21(10): 1318-31. google scholar
  • 3. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7. google scholar
  • 4. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16(1): 1-13. google scholar
  • 5. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 2007; 68(21): 1809-14. google scholar
  • 6. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015; 35(5): 747-50. google scholar
  • 7. Waubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 2006; 22(4): 235-44. google scholar
  • 8. Gorter JA, Aronica E, van Vliet EA. The roof is leaking and a storm is raging: repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Curr 2019; 19(3): 177-81. google scholar
  • 9. Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11(7): 467-81. google scholar
  • 10. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71: 635-700. google scholar
  • 11. Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019; 16(1): 180. google scholar
  • 12. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s Disease brain: a review. Front Aging Neurosci 2018; 10: 42. google scholar
  • 13. Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s Disease-a critical review. Mol Neurobiol 2019; 56(3): 1841-51. google scholar
  • 14. Draper B, Yee WL, Pedrana A, Kyi KP, Qureshi H, Htay H, et al. Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients. Lancet Reg Health West Pac 2022; 20: 100359. google scholar
  • 15. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RA, Bromberg E, de Vries EF. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 2019; 56: 3295-312. google scholar
  • 16. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, Group CS, et al. The economic cost of brain disorders in Europe. Eur J JNeurol 2012; 19(1): 155-62. google scholar
  • 17. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurol 2019; 18(5): 459-80. google scholar
  • 18. Rhee SH. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest Res 2014; 12(2): 90-5. google scholar
  • 19. Marsik C, Sunder-Plassmann R, Jilma B, Kovar FM, Mannhalter C, Wagner O, et al. The C-reactive protein (+)1444C/T alteration modulates the inflammation and coagulation response in human endotoxemia. Clin Chem 2006; 52(10): 1952-7. google scholar
  • 20. Wight RD, Tull CA, Deel MW, Stroope BL, Eubanks AG, Chavis JA, et al. Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem Biophys Res Commun 2012; 426(1): 112-5. google scholar
  • 21. Brown GC, Camacho M, Williams-Gray CH. The endotoxin hypothesis of Parkinson’s disease. Mov Disord 2023; 38(7): 1143-55. google scholar
  • 22. Liguori C, Romigi A, Izzi F, Placidi F, Nuccetelli M, Cordella A, et al. Complement system dysregulation in patients affected by idiopathic generalized epilepsy and the effect of antiepileptic treatment. Epilepsy Res 2017; 137: 107-11. google scholar
  • 23. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12): 1584-96. google scholar
  • 24. Akil E, Bulut A, Kaplan I, Ozdemir HH, Arslan D, Aluclu MU. The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol Sci 2015; 36: 423-8. google scholar
  • 25. Kim R, Kim H-J, Kim A, Jang M, Kim A, Kim Y, et al. Peripheral blood inflammatory markers in early Parkinson’s disease. J Clin Neurosci 2018; 58: 30-3. google scholar
  • 26. Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005; 25(26): 6251-9. google scholar
  • 27. Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 1999; 10(3): 557-61. google scholar
  • 28. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol 2010; 25(2): 237-58. google scholar
  • 29. Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 2019; 40: 13-23. google scholar
  • 30. Park H, Kang S, Nam E, Suh Y-H, Chang K-A. The protective effects of PSM-04 against beta amyloid-induced neurotoxicity in primary cortical neurons and an animal model of Alzheimer’s disease. Front Pharmacol 2019; 10: 2. google scholar
  • 31. Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y. Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenergetics 2011; 3: 2. google scholar
  • 32. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 2012; 32(7): 1107-38. google scholar
  • 33. Niccoli T, Kerr F, Snoeren I, Fabian D, Aleyakpo B, Ivanov D, et al. Activating transcription factor 4-dependent lactate dehydrogenase activation as a protective response to amyloid beta toxicity. Brain Commun 2021; 3(2): fcab053. google scholar
  • 34. Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, et al. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY) 2020; 12(11): 10041. google scholar
  • 35. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810-23. google scholar
  • 36. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodnguez E, Donapetry-Garaa C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17: 76-100. google scholar
  • 37. Kreisberg RA. Lactate homeostasis and lactic acidosis. Ann Intern Med 1980; 92(2 Part 1): 227-37. google scholar
  • 38. Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, et al. The epigenetic regulation ofHIF-1aby SIRTI in MPP+ treated SH-SY5Y cells. Biochem Biophys Res Commun 2016; 470(2): 453-9. google scholar
  • 39. Yao Q, Liu H, Li Y. Low levels of serum LDH are associated with depression and suicide attempts. Gen Hosp Psychiatry 2022; 79: 42-9. google scholar
  • 40. Doktorchik C, Patten S, Eastwood C, Peng M, Chen G, Beck CA, et al. Validation of a case definition for depression in administrative data against primary chart data as a reference standard. BMC Psychiatry 2019; 19:1-8. google scholar
Year 2024, Volume: 14 Issue: 2, 92 - 101, 26.08.2024
https://doi.org/10.26650/experimed.1472096

Abstract

References

  • 1. Riessland M. Is cellular senescence of dopaminergic neurons the cause of local inflammation in the midbrain observed in Parkinson’s Disease? J Cell Immun 2020; 2(5): 201-4. google scholar
  • 2. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21(10): 1318-31. google scholar
  • 3. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7. google scholar
  • 4. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16(1): 1-13. google scholar
  • 5. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 2007; 68(21): 1809-14. google scholar
  • 6. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015; 35(5): 747-50. google scholar
  • 7. Waubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 2006; 22(4): 235-44. google scholar
  • 8. Gorter JA, Aronica E, van Vliet EA. The roof is leaking and a storm is raging: repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Curr 2019; 19(3): 177-81. google scholar
  • 9. Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11(7): 467-81. google scholar
  • 10. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71: 635-700. google scholar
  • 11. Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019; 16(1): 180. google scholar
  • 12. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s Disease brain: a review. Front Aging Neurosci 2018; 10: 42. google scholar
  • 13. Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s Disease-a critical review. Mol Neurobiol 2019; 56(3): 1841-51. google scholar
  • 14. Draper B, Yee WL, Pedrana A, Kyi KP, Qureshi H, Htay H, et al. Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients. Lancet Reg Health West Pac 2022; 20: 100359. google scholar
  • 15. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RA, Bromberg E, de Vries EF. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 2019; 56: 3295-312. google scholar
  • 16. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, Group CS, et al. The economic cost of brain disorders in Europe. Eur J JNeurol 2012; 19(1): 155-62. google scholar
  • 17. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurol 2019; 18(5): 459-80. google scholar
  • 18. Rhee SH. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest Res 2014; 12(2): 90-5. google scholar
  • 19. Marsik C, Sunder-Plassmann R, Jilma B, Kovar FM, Mannhalter C, Wagner O, et al. The C-reactive protein (+)1444C/T alteration modulates the inflammation and coagulation response in human endotoxemia. Clin Chem 2006; 52(10): 1952-7. google scholar
  • 20. Wight RD, Tull CA, Deel MW, Stroope BL, Eubanks AG, Chavis JA, et al. Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem Biophys Res Commun 2012; 426(1): 112-5. google scholar
  • 21. Brown GC, Camacho M, Williams-Gray CH. The endotoxin hypothesis of Parkinson’s disease. Mov Disord 2023; 38(7): 1143-55. google scholar
  • 22. Liguori C, Romigi A, Izzi F, Placidi F, Nuccetelli M, Cordella A, et al. Complement system dysregulation in patients affected by idiopathic generalized epilepsy and the effect of antiepileptic treatment. Epilepsy Res 2017; 137: 107-11. google scholar
  • 23. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12): 1584-96. google scholar
  • 24. Akil E, Bulut A, Kaplan I, Ozdemir HH, Arslan D, Aluclu MU. The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol Sci 2015; 36: 423-8. google scholar
  • 25. Kim R, Kim H-J, Kim A, Jang M, Kim A, Kim Y, et al. Peripheral blood inflammatory markers in early Parkinson’s disease. J Clin Neurosci 2018; 58: 30-3. google scholar
  • 26. Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005; 25(26): 6251-9. google scholar
  • 27. Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 1999; 10(3): 557-61. google scholar
  • 28. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol 2010; 25(2): 237-58. google scholar
  • 29. Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 2019; 40: 13-23. google scholar
  • 30. Park H, Kang S, Nam E, Suh Y-H, Chang K-A. The protective effects of PSM-04 against beta amyloid-induced neurotoxicity in primary cortical neurons and an animal model of Alzheimer’s disease. Front Pharmacol 2019; 10: 2. google scholar
  • 31. Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y. Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenergetics 2011; 3: 2. google scholar
  • 32. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 2012; 32(7): 1107-38. google scholar
  • 33. Niccoli T, Kerr F, Snoeren I, Fabian D, Aleyakpo B, Ivanov D, et al. Activating transcription factor 4-dependent lactate dehydrogenase activation as a protective response to amyloid beta toxicity. Brain Commun 2021; 3(2): fcab053. google scholar
  • 34. Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, et al. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY) 2020; 12(11): 10041. google scholar
  • 35. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810-23. google scholar
  • 36. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodnguez E, Donapetry-Garaa C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17: 76-100. google scholar
  • 37. Kreisberg RA. Lactate homeostasis and lactic acidosis. Ann Intern Med 1980; 92(2 Part 1): 227-37. google scholar
  • 38. Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, et al. The epigenetic regulation ofHIF-1aby SIRTI in MPP+ treated SH-SY5Y cells. Biochem Biophys Res Commun 2016; 470(2): 453-9. google scholar
  • 39. Yao Q, Liu H, Li Y. Low levels of serum LDH are associated with depression and suicide attempts. Gen Hosp Psychiatry 2022; 79: 42-9. google scholar
  • 40. Doktorchik C, Patten S, Eastwood C, Peng M, Chen G, Beck CA, et al. Validation of a case definition for depression in administrative data against primary chart data as a reference standard. BMC Psychiatry 2019; 19:1-8. google scholar
There are 40 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Nur Damla Korkmaz 0000-0002-1173-1701

Birsen Elibol 0000-0002-9462-0862

Seda Süsgün 0000-0001-9689-3111

Ceyhun Toruntay 0000-0002-4743-0257

Alişan Bayrakoğlu 0000-0001-9620-2237

Mazlum Yuzgulec 0009-0006-8949-0529

Zihni Elagoz 0009-0006-0517-8133

Ayşegül Yabacı Tak 0000-0002-5813-3397

Emrah Yücesan 0000-0003-4512-8764

Ferda İlgen Uslu 0000-0002-2124-5037

Gülsen Babacan Yıldız 0000-0003-0922-0969

Azize Esra Başar Gürsoy 0000-0002-8103-0927

Fahri Akbaş 0000-0002-3837-250X

Bilge Sümbül 0000-0002-8768-3777

Publication Date August 26, 2024
Submission Date April 25, 2024
Acceptance Date July 16, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

Vancouver Korkmaz ND, Elibol B, Süsgün S, Toruntay C, Bayrakoğlu A, Yuzgulec M, Elagoz Z, Yabacı Tak A, Yücesan E, İlgen Uslu F, Babacan Yıldız G, Başar Gürsoy AE, Akbaş F, Sümbül B. Relationship Between BDNF and LPS Levels in the Blood of Patients with Different Neurological Diseases: A Small Cohort Study. Experimed. 2024;14(2):92-101.