Review
BibTex RIS Cite

Conductor of the Astrocyte-Neuron Metabolic Orchestra

Year 2022, , 109 - 128, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078905

Abstract

Disorders such as diabetes mellitus, obesity, Parkinson’s, and Alzheimer’s diseases are characterized by central metabolic dysfunctions and pose an enormous economic burden to public health. Annually, several millions of new cases and deaths are reported worldwide, thus substantiating the need to search for new frontiers in combating the growing prevalence and mortality of these diseases. Over the past few years, scientific evidence has consistently shown that the functional sweet taste receptor, T1R2+T1R3 heterodimer, serves to direct (conduct) peripheral glucose metabolism. Recent data have revealed that this heterodimer can also act as a central glucosensor that conducts cerebral glucose metabolism. Emerging reports have confirmed the central role of this receptor as a driver of glucose metabolism in neurons and astrocytes. In this paper, “metabolic
orchestra” is used to depict the organizational complexity of the plasma membrane receptor-network involved in coordinating glucose transport and metabolism in the astrocyte-neuron circuitry. In light of recent works, suggesting that the taste receptor is a crucial central glucosensor and master coordinator of glucose metabolism, here, the
T1R2+T1R3 heterodimer is referred to as the metabolic conductor of the astrocyte-neuron circuitry, responsible for a highly coordinatedsignaling of glucose molecules and multi-directional cross-talk with other plasma membrane receptors. This concept represents a shift on the astrocyte-neuron metabolic machinery from the GLUT-2 mediated entry of glucose to a more coordinated one, involving multiple players at the plasma membrane. Research focusing on the treatments of brain disorders involving glucose metabolic dysfunctions is also discussed.

References

  • Abdelaa, M., le Roux, C. W., Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Translational Medicine, 5, 161. https://doi.org/10.21037/atm.2017.03.107
  • Arroyo-Johnson, C., & Mincey, K. D. (2016). Obesity epidemiology worldwide. Gastroenterology Clinics of North America, 45, 571–9. https://doi:10.1016/j.gtc.2016.07.012.
  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism,21, 1133-45. https://doi/10.1097/00004647-200110000-00001
  • Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., Foretz, M., Thorens, B. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995. https://doi.org/10.2337/diabetes.55.04.06.db05-1386
  • Bak, L. K., Schousboe, A., & Waagepetersen, H. S.(2011). Glutamate and glutamine in brain disorders. In: J. Blass (Ed.), Neurochemical mechanisms in disease. Advances in neurobiology (pp. 195–212). New York, United States of America: Springer.
  • Bartlett, E. J., Brown, J. W., Wolf, A. P., Brodie, J. D. (1987). Correlations between glucose metabolic rates in brain regions of healthy male adults at rest and during language stimulation. Brain and Language, 32,1-18. https://doi.org/10.1016/0093- 934X(87)90115-5
  • Behrens, P. F., Franz, P., Woodman, B., Lindenberg, K. S., Landwehrmeyer, G. B. (2002). Impaired glutamate transport and glutamate–glutamine cycling: downstream effects of the Huntington mutation. Brain, 125, 1908–1922. https://doi.org/10.1093/brain/awf180
  • Belgardt, B. F., Okamura, T., Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. Journal of Physiology, 587, 5305–5314. https://doi.org/10.1113/jphysiol.2009.179192
  • Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans‐Borgmeyer, I., Liu, B., Meyerhof, W., Kasparov, S., Dale, N. (2017). A sweet taste receptor‐ dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65, 773–789. https://doi.org/10.1002/glia.23125
  • Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta Molecular Cell Research, 1863, 2531–2539. https://doi.org/10.1016/j.bbamcr.2015.12.017
  • Blum-Degen, D., Frölich, L., Hoyer, S., Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission, 46, 139-147.
  • Burdakov, D., Luckman, S. M., Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2227–2235. https://doi.org/10.1098/rstb.2005.1763
  • Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1): 5–17.https://doi.org/10.2174/156720512799015064
  • Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology, Nutrition and Metabolism, 42(8), 793–801. https://doi.org/10.1139/apnm-2016-0705
  • Chiba, Y., Sugiyama, Y., Nishi, N., Nonaka, W., Murakami, R., Ueno, M. (2020). Sodium/glucose cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human and mouse brains. Neuropathology, 40(5), 482-491.https://doi.org/10.1111/neup.12665
  • Chin, J. H., & Vora, N. (2014). The global burden of neurologic diseases. Neurology, 83(4), 349–351. https://doi.org/10.1212/WNL.0000000000000610
  • De la Monte, S. M., Tong, M., Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/ exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390. https://doi.org/10.3233/JAD-170829
  • De Morentin, B. M. P., González, C. R., Saha, A. K., Martins, L., Diéguez, C., Vidal-Puig, A., Tena- Sempere, M., López, M. (2011). Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 12(3), 127–140. doi:10.1007/s11154-011-9165-5.
  • Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190. https://doi.org/10.1136/gutjnl-2013-305112
  • Díaz-García, C. M., & Yellen, G. (2019). Neurons rely on glucose rather than astrocytic lactate during stimulation. Journal of Neuroscience Research, 97(8), 883–889. https://doi:10.1002/jnr.24374
  • Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2-3), 321–351. https://doi.org/10.1016/j.neuint.2003.10.011
  • Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125. https://doi.org/10.1002/jnr.24015
  • Dienel, G. A. (2017b). The metabolic trinity, glucose- glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25. https://doi.org/10.1016/j.neulet.2015.02.052
  • DiNuzzo, M., Mangia, S., Maraviglia, B., Giove, F. (2010). Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. Journal of Cerebral Blood Flow & Metabolism, 30(3),586-602. https://doi: 10.1038/jcbfm2009.232
  • Dobson, M. C., & Gaunt, H. F. (2013). Musical and social communication in expert orchestral performance. Psychology of Music, 43, 24-42. https://doi:10.1177/0305735613491998
  • Duarte, A. C., Santos, J., Costa, A. R., Ferreira, C. L., Tomás, J., Quintela, T., Ishikawa, H., Schwerk, C.,Schroten, H., Ferrer, I., Carro, E., Gonçalves, I.,Santos, C. R. A. (2020). Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochemical Pharmacology, 177, 113954. https://doi: 10.1016/j.bcp.2020.113954
  • Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., Hargreaves, I. P., Pope, S.,Holton, J.L., Lees, A., Heales, S.J., Bandopadhyay, R. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115. https://doi.org/10.1016/j.neurobiolaging.2013.11.001
  • Duran, J., Tevy, M. F., Garcia-Rocha, M., Calbó, J., Milán, M., Guinovart, J. J. (2012). Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Molecular Medicine, 4(8), 719–729. https://doi.org/10.1002/emmm.201200241
  • Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. Journal of Neuroscience, 37(36), 8678–8687. https://doi.org/10.1523/JNEUROSCI.0798-17.2017
  • Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227. https://doi.org/10.2337/db06-0567
  • Foo, K., Blumenthal, L., & Man, H. Y. (2012). Regulation of neuronal bioenergy homeostasis by glutamate. Neurochemistry International, 61(3), 389-396. https://doi.org/10.1016/j.neuint.2012.06.003
  • Ford, L., & Davidson, J. W. (2003). An investigation of members’ roles in wind quintets. Psychology of Music, 31(1), 53–74. https://doi.org/10.1177/0305735603031001323
  • Forouhi, N. G., & Wareham, N. J. (2014). Epidemiology of diabetes. Medicine, 42(12), 698–702. https://doi.org/10.1016/j.mpmed.2014.09.007
  • García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., Reinicke, K., Zúñiga, F., Vera, J. C., Oñate, S. A., Nualart, F. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724. https://doi.org/10.1046/j.1471-4159.2003.01892.x
  • Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions– in silico study supported by in vitro expression data. BMC Systems Biology, 5, 162. https://doi.org/10.1186/1752-0509-5-162
  • Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., Vasselli, J. R., Sclafani, A. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 309(5), R552– 60. https://doi.org/10.1152/ajpregu.00056.2015
  • Goldberger, A. L., Rigney, D. R., West, B. J. (1990). Chaos and fractals in human physiology. Scientific American, 262(2), 42–49.
  • Guo, C., Sun, L., Chen, X., Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8(21), 2003–2014. https://doi.org/10.1155/2020/1270256
  • Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., Dodel, R., Ekman, M., Faravelli, C., Fratiglioni, L., Gannon, B., Jones, D. H., Jennum, P., Jordanova, A., Jönsson, L., Karampampa, K., Knapp, M., Kobelt, G., Kurth, T., Lieb, R., … CDBE2010Study Group (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779. https:// doi.org/10.1016/j.euroneuro.2011.08.008
  • Hall, C. N., Klein-Flügge, M. C., Howarth, C., Attwell,D. (2012). Oxidative phosphorylation,not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. Journal of Neuroscience, 32(26), 8940–8951. https://doi.org/10.1523/JNEUROSCI.0026-12.2012
  • Hamano, K., Nakagawa, Y., Ohtsu, Y., Li, L., Medina, J., Tanaka, Y., Masuda, K., Komatsu, M., Kojima, I. (2015). Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. Journal of Endocrinology, 226(1), 57–66. https://doi.org/10.1530/JOE-15-0102
  • Hertz, L., Gibbs, M. E., Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261. https://doi:10.3389/fnins.2014.00261
  • Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In: J. Hubbard, & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). California, United States of America: Academic Press.
  • Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Translational Psychiatry, 8(1), 76.https://doi.org/10.1038/s41398-018-0123-9
  • Kaidanovich-Beilin, O., Cha, D. S., McIntyre, R. S.(2012). Crosstalk between metabolic and neuropsychiatric disorders. F1000 Biology Reports, 4, 14. https://doi.org/10.3410/B4-14
  • Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., Ahmad, A. S. (2016). Streptozotocin intracerebroventricular- induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7),4548–4562. https://doi.org/10.1007/s12035-015-9384-y
  • Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559. https://doi.org/10.2337/diabetes.53.3.549
  • Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In: L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). California, United States of America: Academic Press.
  • Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199. https://doi.org/10.3389/fneur.2013.00199
  • Kochem M. (2017). Type 1 Taste Receptors in Taste and Metabolism. Annals of Nutrition & Metabolism, 70, 27–36. https://doi.org/10.1159/000478760
  • Koekkoek, L. L., Mul, J. D., la Fleur, S. E. (2017). Glucose-Sensing in the Reward System. Frontiers in Neuroscience, 11, 716. https://doi.org/10.3389/ fnins.2017.00716
  • Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura,T., Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502. https://doi:10.3389/fnins.2016.00502
  • Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. Journal of Physiological Sciences, 67(4), 459–465. https://doi.org/10.1007/s12576-017-0535-y
  • Kong, L., Zhao, Y., Zhou, W. J., Yu, H., Teng, S. W.,Guo, Q., Chen, Z., Wang, Y. (2017). Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus. Frontiers in Molecular Neuroscience, 10, 388.https://doi.org/10.3389/fnmol.2017.00388
  • Kow, L. M., & Pfaff, D. W. (1985). Actions of feeding- relevant agents on hypothalamic glucose-responsive neurons in vitro. Brain Research Bulletin,15(5), 509–513. https://doi.org/10.1016/0361-9230(85)90041-3
  • Kuhn, C., Bufe, B., Batram, C., Meyerhof, W. (2010). Oligomerization of TAS2R bitter taste receptors. Chemical Senses, 35(5), 395–406. https://doi.org/10.1093/chemse/bjq027
  • Kyriazis, G. A., Soundarapandian, M. M., Tyrberg,B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 109(8), E524–E532. https://doi.org/10.1073/pnas.1115183109
  • Lee, R. J., & Cohen, N. A. (2015). Taste receptors in innate immunity. Cellular and Molecular Life Sciences : CMLS, 72(2), 217–236. https://doi.org/10.1007/s00018-014-1736-7
  • Lev-Vachnish, Y., Cadury, S., Rotter-Maskowitz, A., Feldman, N., Roichman, A., Illouz, T., Varvak, A., Nicola, R., Madar, R., Okun, E. (2019). L-Lactate Promotes Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 13, 403. https://doi.org/10.3389/fnins.2019.00403
  • Lim, M. C. (2014). In pursuit of harmony: the social and organisational factors in a professional vocal ensemble. Psychology of Music, 42(3),307–324. https://doi.org/10.1177/0305735612469674
  • Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., … Memish, Z. A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128.https://doi.org/10.1016/S0140-6736(12)61728-0
  • Lu, P., Zhang, C. H., Lifshitz, L. M., ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. Journal of General Physiology, 149(2), 181–197. https://doi.org/10.1085/jgp.201611637
  • Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D., Sun, W., Goldman, S., Blekot, S., Nielsen, M., Takano, T., Deane, R., Nedergaard,M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807. https://doi.org/10.1038/ncomms7807
  • Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: from metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19(4), 235–249. https://doi.org/10.1038/nrn.2018.19
  • Mangia, S., Simpson, I. A., Vannucci, S. J., Carruthers, A. (2009). The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. Journal of Neurochemistry, 109 (Suppl 1), 55–62. https://doi.org/10.1111/j.1471-4159.2009.06003.x
  • Margolskee R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. The Journal of Biological Chemistry, 277(1), 1–4. https://doi. org/10.1074/jbc.R100054200
  • Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., Becker, K. G., Lehrmann, E., Wood, W. H., 3rd, Zhang, Y., Etienne, H., van Gastel, J., Azmi, A., Janssens, J., Maudsley, S. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530. https://doi.org/10.1074/jbc.M116.773820
  • Marty, N., Dallaporta, M., Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda, Md.), 22, 241–251. https://doi.org/10.1152/physiol.00010.2007
  • Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., Appendino, G., Behrens, M. (2010). The molecular receptive ranges of human TAS2R bitter taste receptors. Chemical Senses, 35(2), 157–170. https://doi.org/10.1093/chemse/bjp092
  • Mizuno, Y., & Oomura, Y. (1984). Glucose responding neurons in the nucleus tractus solitarius of the rat:in vitro study. Brain Research, 307(1-2), 109–116. https://doi.org/10.1016/0006-8993(84)90466-9
  • Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., Zolotarev, V. A. (2014). The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia. Journal of Evolutionary Biochemistry and Physiology, 50, 334–344. https://doi.org/10.1134/S0022093014040061
  • Murovets, V. O., Bachmanov, A. A., Zolotarev, V. A. (2015). Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene. PloS One, 10(6), e0130997. https://doi.org/10.1371/journal.pone.0130997
  • Newman, L. A., Korol, D. L., Gold, P. E. (2011). Lactate produced by glycogenolysis in astrocytes regulates memory processing. PloS One, 6(12), e28427. https://doi.org/10.1371/journal.pone.0028427
  • Patel, A. B., Lai, J. C., Chowdhury, G. M., Hyder, F., Rothman, D. L., Shulman, R. G., Behar, K. L.(2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5385–5390. https://doi.org/10.1073/pnas.1403576111
  • Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., Magistretti, P. J. (2007). Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia, 55(12), 1251–1262. https://doi.org/10.1002/glia.20528
  • Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10625–10629. https://doi.org/10.1073/pnas.91.22.10625
  • Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., Schultes, B., Born, J., Fehm, H. L. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28(2), 143–180. https://doi.org/10.1016/j.neubiorev.2004.03.002
  • Petroff, O. A. C. (2007). Metabolic biopsy of the brain.In: S. G, Waxman (Ed.), Molecular neurology (pp.77-100). California, , United States of America: Academic Press.
  • Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., Jansen, R. P. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70. https://doi.org/10.1186/1471-2202-15-70
  • Porras, O. H., Loaiza, A., Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. Journal of Neuroscience, 24(43), 9669–73. https://doi: 10.1523/JNEUROSCI.1882-04.2004
  • Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., Galgani, M., De Rosa, V., Matarese, G. (2016). Role of metabolism in neurodegenerative disorders. Metabolism: Clinical and Experimental, 65(9), 1376–1390.https://doi.org/10.1016/j.metabol.2016.05.018
  • Rao, J., Oz, G., & Seaquist, E. R. (2006). Regulation of cerebral glucose metabolism. Minerva Endocrinologica, 31(2), 149–158.
  • Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3, 12. https://doi.org/10.3389/neuro.07.012.2009
  • Roh, E., Song, D. K., Kim, M. S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48(3), e216. https://doi.org/10.1038/emm.2016.4
  • Rubio-Aliaga, I., Wagner, C. A. (2016). Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels, 10(6), 440–452. https://doi.org/10.1080/19336950.2016.1207024
  • Saez, I., Duran, J., Sinadinos, C., Beltran, A., Yanes, O., Tevy, M. F., Martínez-Pons, C., Milán, M., Guinovart, J. J. (2014). Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. Journal of Cerebral Blood Flow and Metabolism, 34(6), 945–955. https://doi.org/10.1038/jcbfm.2014.33
  • Shah, K., Desilva, S., Abbruscato, T. (2012). The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. International Journal of Molecular Sciences, 13(10), 12629–12655. https://doi.org/10.3390/ijms131012629
  • Sivakumar, S., Bharathy, G. (2012). Molecular mechanism of interaction between human sweet taste receptors andantidiabetic agents of Gymnema sylvestre through docking studies. International Journal of Research in Phytochemistry & Pharmacology, 2(4), 164-170. https://scienztech.org/ijrpp/article/view/828
  • Supplie, L. M., Düking, T., Campbell, G., Diaz, F., Moraes, C. T., Götz, M., Hamprecht, B., Boretius, S., Mahad, D., Nave, K. A. (2017). Respiration- Deficient Astrocytes Survive As Glycolytic Cells In Vivo. Journal of Neuroscience, 37(16), 4231–4242. https://doi.org/10.1523/JNEUROSCI.0756-16.2017
  • Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., Alberini, C. M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144(5), 810–823. https://doi.org/10.1016/j.cell.2011.02.018
  • Urizar, E., Montanelli, L., Loy, T., Bonomi, M., Swillens, S., Gales, C., Bouvier, M., Smits, G., Vassart, G., Costagliola, S. (2005). Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO Journal, 24(11), 1954–1964. https://doi.org/10.1038/sj.emboj.7600686
  • van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E., Neal, B. (2010). The global burden of diabetes and its complications: an emerging pandemic. European Journal of Cardiovascular Prevention and Rehabilitation, 17 Suppl 1, S3–S8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a
  • Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W.,Kroemer, N. B., Garcia, E., Yeomans, M. R., Small,D. M. (2017). Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Current Biology, 27(16), 2476–2485.e6. https://doi.org/10.1016/j.cub.2017.07.018
  • Vercruysse, P., Vieau, D., Blum, D., Petersén, Å., Dupuis, L. (2018). Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Frontiers in Molecular Neuroscience, 11, 2. https://doi.org/10.3389/fnmol.2018.00002
  • Welcome, M. O., Mastorakis, N. E., Pereverzev, V. A. (2015). Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurology Research International, 2015, 606479. https://doi.org/10.1155/2015/606479
  • Welcome, M., & Pereverzev, V. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Sciences Research, 4(Suppl 3), S199–S207. https://doi.org/10.4103/2141-9248.141959
  • Welcome, M. O. (2018). Gastrointestinal physiology:development, principles and mechanism of regulation. Cham, Switzerland: Springer International Publishing AG. https://doi: 10.1007/978-3-319-91056-7.
  • Westrup, J. (2001). Instrumentation and orchestration: 3. 1750 to 1800. In: S. Sadie (Ed.), New grove dictionary of music and musicians. New York, United States of America: NUSA. Wiesinger, H., Hamprecht, B., Dringen, R. (1997).Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34. https://doi.org/10.1002/(sici)1098-1136(199709)21:1<22::aid-glia3>3.0.co;2-3
  • Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P., Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R., Steinhausen, H. C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(9), 655–679. https://doi.org/10.1016/j.euroneuro. 2011.07.018
  • Yee, K. K., Sukumaran, S. K., Kotha, R., Gilbertson, T. A., Margolskee, R. F. (2011). Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5431–5436. https://doi.org/10.1073/ pnas.1100495108
  • Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., Liu, Y., Ding, J., Qin, L., Xu, Z., Long, Y., Xu, Y. (2018). Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214. https://doi.org/10.1155/2018/7078214

Astrosit-Nöron Metabolik Orkestrasının Şefi

Year 2022, , 109 - 128, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078905

Abstract

Diabetes mellitus, obezite, Parkinson ve Alzheimer hastalıkları gibi bozukluklar, merkezi metabolik işlev bozuklukları ile karakterize edilir ve halk sağlığına çok büyük ekonomik yük
oluşturur. Dünya çapında her yıl milyonlarca yeni vaka ve ölüm rapor edilmektedir, bu durum bu hastalıkların artan yaygınlığı ve ölüm oranıyla mücadele etmek için yeni çözümler arayışını ortaya koymaktadır. Son birkaç yıldır bilimsel kanıtlar, tatlı tat almaya yardımcı reseptör T1R2+T1R3 heterodimerinin periferal glukoz metabolizmasını yönlendirmeye hizmet ettiğini tutarlı bir şekilde göstermiştir. Son veriler, bu heterodimerin aynı zamanda serebral glukoz metabolizmasını gerçekleştiren merkezi bir glukosensör görevi gördüğünü ortaya çıkarmıştır. Elde edilen bulgular, bu reseptörün nöronlarda ve astrositlerde glukoz metabolizmasının itici gücü olarak merkezi rolünü doğrulamaktadır. Bu makalede, “metabolik orkestra”, astrosit-nöron devrelerinde glukoz taşınmasını ve metabolizmasını koordine etmede yer alan plazma membran reseptör ağının organizasyonel karmaşıklığını tasvir etmek için kullanılmıştır. Bu derleme, son zamanlarda yapılan çalışmaların ışığında, tat reseptörünün çok önemli bir merkezi glukosensör ve glukoz metabolizmasının ana koordinatörü olduğunu öne sürerek, astrosit-nöron devresinin metabolik iletkeni olarak T1R2+T1R3 heterodimerine atıfta bulunmaktadır; buna göre glukozun hücre içine GLUT-2 aracılı girişinden ziyade plazma zarında astrositnöron metabolik mekanizmasını içeren daha koordineli bir giriş açıklanmaktadır. Ayrıca, glukoz metabolik disfonksiyonlarını içeren beyin bozuklukları için yeni tedavi yolları sağlayabilecek araştırma konuları da tartışılmıştır.

References

  • Abdelaa, M., le Roux, C. W., Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Translational Medicine, 5, 161. https://doi.org/10.21037/atm.2017.03.107
  • Arroyo-Johnson, C., & Mincey, K. D. (2016). Obesity epidemiology worldwide. Gastroenterology Clinics of North America, 45, 571–9. https://doi:10.1016/j.gtc.2016.07.012.
  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism,21, 1133-45. https://doi/10.1097/00004647-200110000-00001
  • Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., Foretz, M., Thorens, B. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995. https://doi.org/10.2337/diabetes.55.04.06.db05-1386
  • Bak, L. K., Schousboe, A., & Waagepetersen, H. S.(2011). Glutamate and glutamine in brain disorders. In: J. Blass (Ed.), Neurochemical mechanisms in disease. Advances in neurobiology (pp. 195–212). New York, United States of America: Springer.
  • Bartlett, E. J., Brown, J. W., Wolf, A. P., Brodie, J. D. (1987). Correlations between glucose metabolic rates in brain regions of healthy male adults at rest and during language stimulation. Brain and Language, 32,1-18. https://doi.org/10.1016/0093- 934X(87)90115-5
  • Behrens, P. F., Franz, P., Woodman, B., Lindenberg, K. S., Landwehrmeyer, G. B. (2002). Impaired glutamate transport and glutamate–glutamine cycling: downstream effects of the Huntington mutation. Brain, 125, 1908–1922. https://doi.org/10.1093/brain/awf180
  • Belgardt, B. F., Okamura, T., Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. Journal of Physiology, 587, 5305–5314. https://doi.org/10.1113/jphysiol.2009.179192
  • Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans‐Borgmeyer, I., Liu, B., Meyerhof, W., Kasparov, S., Dale, N. (2017). A sweet taste receptor‐ dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65, 773–789. https://doi.org/10.1002/glia.23125
  • Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta Molecular Cell Research, 1863, 2531–2539. https://doi.org/10.1016/j.bbamcr.2015.12.017
  • Blum-Degen, D., Frölich, L., Hoyer, S., Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission, 46, 139-147.
  • Burdakov, D., Luckman, S. M., Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2227–2235. https://doi.org/10.1098/rstb.2005.1763
  • Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1): 5–17.https://doi.org/10.2174/156720512799015064
  • Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology, Nutrition and Metabolism, 42(8), 793–801. https://doi.org/10.1139/apnm-2016-0705
  • Chiba, Y., Sugiyama, Y., Nishi, N., Nonaka, W., Murakami, R., Ueno, M. (2020). Sodium/glucose cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human and mouse brains. Neuropathology, 40(5), 482-491.https://doi.org/10.1111/neup.12665
  • Chin, J. H., & Vora, N. (2014). The global burden of neurologic diseases. Neurology, 83(4), 349–351. https://doi.org/10.1212/WNL.0000000000000610
  • De la Monte, S. M., Tong, M., Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/ exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390. https://doi.org/10.3233/JAD-170829
  • De Morentin, B. M. P., González, C. R., Saha, A. K., Martins, L., Diéguez, C., Vidal-Puig, A., Tena- Sempere, M., López, M. (2011). Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 12(3), 127–140. doi:10.1007/s11154-011-9165-5.
  • Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190. https://doi.org/10.1136/gutjnl-2013-305112
  • Díaz-García, C. M., & Yellen, G. (2019). Neurons rely on glucose rather than astrocytic lactate during stimulation. Journal of Neuroscience Research, 97(8), 883–889. https://doi:10.1002/jnr.24374
  • Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2-3), 321–351. https://doi.org/10.1016/j.neuint.2003.10.011
  • Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125. https://doi.org/10.1002/jnr.24015
  • Dienel, G. A. (2017b). The metabolic trinity, glucose- glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25. https://doi.org/10.1016/j.neulet.2015.02.052
  • DiNuzzo, M., Mangia, S., Maraviglia, B., Giove, F. (2010). Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. Journal of Cerebral Blood Flow & Metabolism, 30(3),586-602. https://doi: 10.1038/jcbfm2009.232
  • Dobson, M. C., & Gaunt, H. F. (2013). Musical and social communication in expert orchestral performance. Psychology of Music, 43, 24-42. https://doi:10.1177/0305735613491998
  • Duarte, A. C., Santos, J., Costa, A. R., Ferreira, C. L., Tomás, J., Quintela, T., Ishikawa, H., Schwerk, C.,Schroten, H., Ferrer, I., Carro, E., Gonçalves, I.,Santos, C. R. A. (2020). Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochemical Pharmacology, 177, 113954. https://doi: 10.1016/j.bcp.2020.113954
  • Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., Hargreaves, I. P., Pope, S.,Holton, J.L., Lees, A., Heales, S.J., Bandopadhyay, R. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115. https://doi.org/10.1016/j.neurobiolaging.2013.11.001
  • Duran, J., Tevy, M. F., Garcia-Rocha, M., Calbó, J., Milán, M., Guinovart, J. J. (2012). Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Molecular Medicine, 4(8), 719–729. https://doi.org/10.1002/emmm.201200241
  • Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. Journal of Neuroscience, 37(36), 8678–8687. https://doi.org/10.1523/JNEUROSCI.0798-17.2017
  • Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227. https://doi.org/10.2337/db06-0567
  • Foo, K., Blumenthal, L., & Man, H. Y. (2012). Regulation of neuronal bioenergy homeostasis by glutamate. Neurochemistry International, 61(3), 389-396. https://doi.org/10.1016/j.neuint.2012.06.003
  • Ford, L., & Davidson, J. W. (2003). An investigation of members’ roles in wind quintets. Psychology of Music, 31(1), 53–74. https://doi.org/10.1177/0305735603031001323
  • Forouhi, N. G., & Wareham, N. J. (2014). Epidemiology of diabetes. Medicine, 42(12), 698–702. https://doi.org/10.1016/j.mpmed.2014.09.007
  • García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., Reinicke, K., Zúñiga, F., Vera, J. C., Oñate, S. A., Nualart, F. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724. https://doi.org/10.1046/j.1471-4159.2003.01892.x
  • Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions– in silico study supported by in vitro expression data. BMC Systems Biology, 5, 162. https://doi.org/10.1186/1752-0509-5-162
  • Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., Vasselli, J. R., Sclafani, A. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 309(5), R552– 60. https://doi.org/10.1152/ajpregu.00056.2015
  • Goldberger, A. L., Rigney, D. R., West, B. J. (1990). Chaos and fractals in human physiology. Scientific American, 262(2), 42–49.
  • Guo, C., Sun, L., Chen, X., Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8(21), 2003–2014. https://doi.org/10.1155/2020/1270256
  • Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., Dodel, R., Ekman, M., Faravelli, C., Fratiglioni, L., Gannon, B., Jones, D. H., Jennum, P., Jordanova, A., Jönsson, L., Karampampa, K., Knapp, M., Kobelt, G., Kurth, T., Lieb, R., … CDBE2010Study Group (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779. https:// doi.org/10.1016/j.euroneuro.2011.08.008
  • Hall, C. N., Klein-Flügge, M. C., Howarth, C., Attwell,D. (2012). Oxidative phosphorylation,not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. Journal of Neuroscience, 32(26), 8940–8951. https://doi.org/10.1523/JNEUROSCI.0026-12.2012
  • Hamano, K., Nakagawa, Y., Ohtsu, Y., Li, L., Medina, J., Tanaka, Y., Masuda, K., Komatsu, M., Kojima, I. (2015). Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. Journal of Endocrinology, 226(1), 57–66. https://doi.org/10.1530/JOE-15-0102
  • Hertz, L., Gibbs, M. E., Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261. https://doi:10.3389/fnins.2014.00261
  • Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In: J. Hubbard, & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). California, United States of America: Academic Press.
  • Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Translational Psychiatry, 8(1), 76.https://doi.org/10.1038/s41398-018-0123-9
  • Kaidanovich-Beilin, O., Cha, D. S., McIntyre, R. S.(2012). Crosstalk between metabolic and neuropsychiatric disorders. F1000 Biology Reports, 4, 14. https://doi.org/10.3410/B4-14
  • Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., Ahmad, A. S. (2016). Streptozotocin intracerebroventricular- induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7),4548–4562. https://doi.org/10.1007/s12035-015-9384-y
  • Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559. https://doi.org/10.2337/diabetes.53.3.549
  • Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In: L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). California, United States of America: Academic Press.
  • Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199. https://doi.org/10.3389/fneur.2013.00199
  • Kochem M. (2017). Type 1 Taste Receptors in Taste and Metabolism. Annals of Nutrition & Metabolism, 70, 27–36. https://doi.org/10.1159/000478760
  • Koekkoek, L. L., Mul, J. D., la Fleur, S. E. (2017). Glucose-Sensing in the Reward System. Frontiers in Neuroscience, 11, 716. https://doi.org/10.3389/ fnins.2017.00716
  • Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura,T., Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502. https://doi:10.3389/fnins.2016.00502
  • Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. Journal of Physiological Sciences, 67(4), 459–465. https://doi.org/10.1007/s12576-017-0535-y
  • Kong, L., Zhao, Y., Zhou, W. J., Yu, H., Teng, S. W.,Guo, Q., Chen, Z., Wang, Y. (2017). Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus. Frontiers in Molecular Neuroscience, 10, 388.https://doi.org/10.3389/fnmol.2017.00388
  • Kow, L. M., & Pfaff, D. W. (1985). Actions of feeding- relevant agents on hypothalamic glucose-responsive neurons in vitro. Brain Research Bulletin,15(5), 509–513. https://doi.org/10.1016/0361-9230(85)90041-3
  • Kuhn, C., Bufe, B., Batram, C., Meyerhof, W. (2010). Oligomerization of TAS2R bitter taste receptors. Chemical Senses, 35(5), 395–406. https://doi.org/10.1093/chemse/bjq027
  • Kyriazis, G. A., Soundarapandian, M. M., Tyrberg,B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 109(8), E524–E532. https://doi.org/10.1073/pnas.1115183109
  • Lee, R. J., & Cohen, N. A. (2015). Taste receptors in innate immunity. Cellular and Molecular Life Sciences : CMLS, 72(2), 217–236. https://doi.org/10.1007/s00018-014-1736-7
  • Lev-Vachnish, Y., Cadury, S., Rotter-Maskowitz, A., Feldman, N., Roichman, A., Illouz, T., Varvak, A., Nicola, R., Madar, R., Okun, E. (2019). L-Lactate Promotes Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 13, 403. https://doi.org/10.3389/fnins.2019.00403
  • Lim, M. C. (2014). In pursuit of harmony: the social and organisational factors in a professional vocal ensemble. Psychology of Music, 42(3),307–324. https://doi.org/10.1177/0305735612469674
  • Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., … Memish, Z. A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128.https://doi.org/10.1016/S0140-6736(12)61728-0
  • Lu, P., Zhang, C. H., Lifshitz, L. M., ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. Journal of General Physiology, 149(2), 181–197. https://doi.org/10.1085/jgp.201611637
  • Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D., Sun, W., Goldman, S., Blekot, S., Nielsen, M., Takano, T., Deane, R., Nedergaard,M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807. https://doi.org/10.1038/ncomms7807
  • Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: from metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19(4), 235–249. https://doi.org/10.1038/nrn.2018.19
  • Mangia, S., Simpson, I. A., Vannucci, S. J., Carruthers, A. (2009). The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. Journal of Neurochemistry, 109 (Suppl 1), 55–62. https://doi.org/10.1111/j.1471-4159.2009.06003.x
  • Margolskee R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. The Journal of Biological Chemistry, 277(1), 1–4. https://doi. org/10.1074/jbc.R100054200
  • Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., Becker, K. G., Lehrmann, E., Wood, W. H., 3rd, Zhang, Y., Etienne, H., van Gastel, J., Azmi, A., Janssens, J., Maudsley, S. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530. https://doi.org/10.1074/jbc.M116.773820
  • Marty, N., Dallaporta, M., Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda, Md.), 22, 241–251. https://doi.org/10.1152/physiol.00010.2007
  • Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., Appendino, G., Behrens, M. (2010). The molecular receptive ranges of human TAS2R bitter taste receptors. Chemical Senses, 35(2), 157–170. https://doi.org/10.1093/chemse/bjp092
  • Mizuno, Y., & Oomura, Y. (1984). Glucose responding neurons in the nucleus tractus solitarius of the rat:in vitro study. Brain Research, 307(1-2), 109–116. https://doi.org/10.1016/0006-8993(84)90466-9
  • Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., Zolotarev, V. A. (2014). The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia. Journal of Evolutionary Biochemistry and Physiology, 50, 334–344. https://doi.org/10.1134/S0022093014040061
  • Murovets, V. O., Bachmanov, A. A., Zolotarev, V. A. (2015). Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene. PloS One, 10(6), e0130997. https://doi.org/10.1371/journal.pone.0130997
  • Newman, L. A., Korol, D. L., Gold, P. E. (2011). Lactate produced by glycogenolysis in astrocytes regulates memory processing. PloS One, 6(12), e28427. https://doi.org/10.1371/journal.pone.0028427
  • Patel, A. B., Lai, J. C., Chowdhury, G. M., Hyder, F., Rothman, D. L., Shulman, R. G., Behar, K. L.(2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5385–5390. https://doi.org/10.1073/pnas.1403576111
  • Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., Magistretti, P. J. (2007). Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia, 55(12), 1251–1262. https://doi.org/10.1002/glia.20528
  • Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10625–10629. https://doi.org/10.1073/pnas.91.22.10625
  • Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., Schultes, B., Born, J., Fehm, H. L. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28(2), 143–180. https://doi.org/10.1016/j.neubiorev.2004.03.002
  • Petroff, O. A. C. (2007). Metabolic biopsy of the brain.In: S. G, Waxman (Ed.), Molecular neurology (pp.77-100). California, , United States of America: Academic Press.
  • Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., Jansen, R. P. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70. https://doi.org/10.1186/1471-2202-15-70
  • Porras, O. H., Loaiza, A., Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. Journal of Neuroscience, 24(43), 9669–73. https://doi: 10.1523/JNEUROSCI.1882-04.2004
  • Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., Galgani, M., De Rosa, V., Matarese, G. (2016). Role of metabolism in neurodegenerative disorders. Metabolism: Clinical and Experimental, 65(9), 1376–1390.https://doi.org/10.1016/j.metabol.2016.05.018
  • Rao, J., Oz, G., & Seaquist, E. R. (2006). Regulation of cerebral glucose metabolism. Minerva Endocrinologica, 31(2), 149–158.
  • Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3, 12. https://doi.org/10.3389/neuro.07.012.2009
  • Roh, E., Song, D. K., Kim, M. S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48(3), e216. https://doi.org/10.1038/emm.2016.4
  • Rubio-Aliaga, I., Wagner, C. A. (2016). Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels, 10(6), 440–452. https://doi.org/10.1080/19336950.2016.1207024
  • Saez, I., Duran, J., Sinadinos, C., Beltran, A., Yanes, O., Tevy, M. F., Martínez-Pons, C., Milán, M., Guinovart, J. J. (2014). Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. Journal of Cerebral Blood Flow and Metabolism, 34(6), 945–955. https://doi.org/10.1038/jcbfm.2014.33
  • Shah, K., Desilva, S., Abbruscato, T. (2012). The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. International Journal of Molecular Sciences, 13(10), 12629–12655. https://doi.org/10.3390/ijms131012629
  • Sivakumar, S., Bharathy, G. (2012). Molecular mechanism of interaction between human sweet taste receptors andantidiabetic agents of Gymnema sylvestre through docking studies. International Journal of Research in Phytochemistry & Pharmacology, 2(4), 164-170. https://scienztech.org/ijrpp/article/view/828
  • Supplie, L. M., Düking, T., Campbell, G., Diaz, F., Moraes, C. T., Götz, M., Hamprecht, B., Boretius, S., Mahad, D., Nave, K. A. (2017). Respiration- Deficient Astrocytes Survive As Glycolytic Cells In Vivo. Journal of Neuroscience, 37(16), 4231–4242. https://doi.org/10.1523/JNEUROSCI.0756-16.2017
  • Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., Alberini, C. M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144(5), 810–823. https://doi.org/10.1016/j.cell.2011.02.018
  • Urizar, E., Montanelli, L., Loy, T., Bonomi, M., Swillens, S., Gales, C., Bouvier, M., Smits, G., Vassart, G., Costagliola, S. (2005). Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO Journal, 24(11), 1954–1964. https://doi.org/10.1038/sj.emboj.7600686
  • van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E., Neal, B. (2010). The global burden of diabetes and its complications: an emerging pandemic. European Journal of Cardiovascular Prevention and Rehabilitation, 17 Suppl 1, S3–S8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a
  • Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W.,Kroemer, N. B., Garcia, E., Yeomans, M. R., Small,D. M. (2017). Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Current Biology, 27(16), 2476–2485.e6. https://doi.org/10.1016/j.cub.2017.07.018
  • Vercruysse, P., Vieau, D., Blum, D., Petersén, Å., Dupuis, L. (2018). Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Frontiers in Molecular Neuroscience, 11, 2. https://doi.org/10.3389/fnmol.2018.00002
  • Welcome, M. O., Mastorakis, N. E., Pereverzev, V. A. (2015). Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurology Research International, 2015, 606479. https://doi.org/10.1155/2015/606479
  • Welcome, M., & Pereverzev, V. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Sciences Research, 4(Suppl 3), S199–S207. https://doi.org/10.4103/2141-9248.141959
  • Welcome, M. O. (2018). Gastrointestinal physiology:development, principles and mechanism of regulation. Cham, Switzerland: Springer International Publishing AG. https://doi: 10.1007/978-3-319-91056-7.
  • Westrup, J. (2001). Instrumentation and orchestration: 3. 1750 to 1800. In: S. Sadie (Ed.), New grove dictionary of music and musicians. New York, United States of America: NUSA. Wiesinger, H., Hamprecht, B., Dringen, R. (1997).Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34. https://doi.org/10.1002/(sici)1098-1136(199709)21:1<22::aid-glia3>3.0.co;2-3
  • Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P., Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R., Steinhausen, H. C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(9), 655–679. https://doi.org/10.1016/j.euroneuro. 2011.07.018
  • Yee, K. K., Sukumaran, S. K., Kotha, R., Gilbertson, T. A., Margolskee, R. F. (2011). Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5431–5436. https://doi.org/10.1073/ pnas.1100495108
  • Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., Liu, Y., Ding, J., Qin, L., Xu, Z., Long, Y., Xu, Y. (2018). Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214. https://doi.org/10.1155/2018/7078214
There are 101 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Reviews
Authors

Menizibeya O. Welcome This is me

Publication Date March 1, 2022
Submission Date March 5, 2021
Published in Issue Year 2022

Cite

APA Welcome, M. O. (2022). Conductor of the Astrocyte-Neuron Metabolic Orchestra. Fabad Eczacılık Bilimler Dergisi, 1(47), 109-128. https://doi.org/10.55262/fabadeczacilik.1078905