Research Article
BibTex RIS Cite

Fen Bilgisi Öğretmen Adaylarının Mühendislik Tasarımlarının Yaratıcılık ve Karar Verme Unsurları Bakımından İncelenmesi

Year 2022, Volume: 10 Issue: 2, 442 - 465, 20.12.2022
https://doi.org/10.56423/fbod.1180830

Abstract

Bu çalışmada fen bilgisi öğretmen adayları ile yürütülen mühendislik tasarım temelli bir etkinlikte öğretmen adaylarının geliştirdikleri çözümlerin yaratıcılık ve karar verme unsurları bakımından incelenmesi amaçlanmıştır. Araştırmanın çalışma grubunu 30 fen bilimleri öğretmen adayı oluşturmaktadır. Araştırma durum çalışması deseni ile yürütülmüştür. Öğretmen adaylarının mühendislik tasarım problemlerine yönelik çözümlerini içeren çizim ve açıklamaları araştırmanın verilerini oluşturmaktadır. Veriler betimsel analiz ile çözümlenmiştir. Araştırma kapsamında yaratıcılık bakımından incelenen çözümlerde öğretmen adaylarından oluşan grupların biri dışında hiçbirinin orijinal bir çözüm ortaya koyamadığı, grupların kendi içlerinde geliştirdikleri çözümlerin farklılaşmasının (esnekliğinin) tüm çözüm sayılarına (akıcılık) oranı incelendiğinde 2 grup hariç diğer grupların çözümlerinin en az yarısı ya da daha fazlasının aynı fikirler etrafında şekillendiği (esnek çözümler olmadığı) ve yeni fikirlerle çözüm üretilemediği, ancak bir grup hariç diğer tüm grupların üretilen çözümlerin en az yarısını ya da daha fazlasını detaylandırabildiği belirlenmiştir. Öğretmen adaylarının en uygun olarak belirledikleri çözümler incelendiğinde ise yalnızca bir grubun tüm kriter ve kısıtlamalara uygun bir çözüme karar verdikleri tespit edilmiştir.

References

  • Asghar, A., Ellington, R., Rice, E., Johnson, F., & Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125.
  • Assessment and Teaching of 21st Century Skills [ATC21S] (2013). Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills (p. 36). Dordrecht: Springer.
  • Ayaz, E. & Sarikaya, R. (2021). The effect of engineering design based science teaching on decision making, scientific creativity and design skills of classroom teacher candidates. Journal of Education in Science, Environment and Health (JESEH), 7(4), 309-328. https://doi.org/10.21891/jeseh.961060
  • Beghetto, R. A. (2007). Ideational code‐switching: Walking the talk about supporting student creativity in the classroom. Roeper Review, 29(4), 265-270
  • Bonnardel, N. (2000). Towards understanding and supporting creativity in design. Knowledge-Based Systems, 13, 505–513.
  • Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi öğretmen adaylarının karar verme becerisi, bilimsel süreç becerileri ve sürece yönelik algılarına etkisi. Doktora Tezi, Gazi Üniversitesi, Ankara.
  • Bozkurt Altan, E., Yamak, H., Kirikkaya, E. B., & Kavak, N. (2018). The use of design-based learning for STEM education and its effectiveness on decision making skills. Universal Journal of Educational Research, 6(12), 2888-2906.
  • Bozkurt Altan, E. (2021). Karar verme becerisi. E. Kabataş Memiş (Ed.) 21. Yüzyıl Becerileri için Fen Eğitimi Öğrenmeyi Derinleştirme (s.192-209). Ankara: Pegem Akademi.
  • Bozkurt Altan, E., Tan, S. (2021). Concepts of creativity in design based learning in STEM education. Int J Technol Des Educ, 31, 503–529.
  • Brunsell, E. (2012) The engineering design process. Brunsell, E. (Ed.) Integrating engineering+ science in your classroom. Arlington, Virginia: National Science Teacher Association [NSTA] Press.
  • Cajas, F. 2001. The science/technology interaction: implications for science literacy. Journal of Research in Science Teaching, 38(7), 715–729.
  • Chabalengula, V. M., & Mumba, F. (2017). Engineering design skills coverage in K-12 engineering program curriculum materials in the USA. International Journal of Science Education, 39(16), 2209-2225.
  • Chao, J., Xie, C., Nourian, S., Chen, G., Bailey, S., Goldstein, M. H., & Tutwiler, M. S. 2017. Bridging the design-science gap with tools: science learning and design behaviors in a simulated environment for engineering design. Journal of Research in Science Teaching, 54(8), 1049–1096.
  • Charyton, C. (2014). Creative engineering design assessment. London: Springer.
  • Chevalier, A. & Ivory, M.Y. (2003). Web site designs: influences of designer’s expertise and design constraints. International Journal of Human–Computer Studies, 58 (1), 57–87.
  • Cszikszentmihalyi, M. (1996). Creativity-flow and the psychology of discovery and invention. New York: Harpercollins Publisher.
  • Denson, C. D. (2015). Developing instrumentation for assessing creativity in engineering design. Journal of Technology Education, 27(1), 23–40.
  • Engineering is Elementary (EİE), 2013. Here comes the sun: Engineering insulated homes. United States of America: Museum of Science.
  • Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitimi. Doktora tezi, Marmara Üniversitesi, İstanbul
  • Ercan, S. & Bozkurt, E. (2013). Expectations from engineering applications in science education: decision making skill. IOSTE Eurasian Regional Symposium & Brokerage event Horizon 2020, Antalya, TURKEY.
  • Fila, N. D. & Purzer, S. (2013). The quality of engineering decision-making in student design teams. 120th ASEE Annual Conference & Exposition, June 23-26, Atlanta, USA.
  • Fortus, D., Krajcik, J., Dershimer, R. C., Marx, R. W., Mamlok‐Naaman, R. (2005). Design‐based science and real‐world problem‐solving. International Journal of Science Education, 27(7), 855-879.
  • Glesne, C. 2013. Nitel Araştırmaya Giriş, Çeviri: Ersoy, A. Ankara: Anı Yayıncılık.
  • Goldstein, M. H., Omar, S. A., Purzer, S., & Adams, R. (2018). Comparing two approaches to engineering design in the seventh grade science classroom. International Journal Engineering Education, 6(4), 381–397.
  • Guilford, J. P. (1950). Creativity. American Psychologist,5, 444–454.
  • Guilford, J. P. (1967a). The Nature of Human Intelligence, New York: McGraw-Hill Inc.
  • Guilford, J. P. (1967b). Creativity: yesterday, today, and tomorrow. The Journal of Creative Behavior, 1(1), 3–14.
  • Hacıoğlu, Y., & Gülhan, F. (2021). The effects of stem education on the students’ critical thinking skills and stem perceptions. Journal of Education in Science Environment and Health, 7(2), 139-155.
  • Hamilton, E., Lesh, R., Lester, F., Brilleslyper, M. 2008. Model-Eliciting Activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2), 1–25.
  • Hathcock, S. J., Dickerson, D. L., Eckhoff, A., & Katsioloudis, P. (2015). Scaffolding for creative product possibilities in a design-based STEM activity. Research in Science Education, 45(5), 727–748.
  • Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61, 569–598.
  • Horowitz, R. (1999). Creative problem solving in engineering design. Doctoral dissertation, Tel-Aviv University.
  • Howard, T., Culley, S., Dekoninck, E. (2008). Creativity in the Engineering Design Process. International Conference in Engineering Design, Cite Des Sciences Et De L’industrie, Paris: France.
  • Hynes, M. M., Portsmore, M., Dare, E., Milto, E., Rogers, C., & Hammer, D. (2011). Infusing engineering design into high school STEM courses. National Center for Engineering and Technology Education. http://ncete .org/flash /pdfs/Infus ing%20Eng ineer ing%20Hyn es.pdf.
  • International Society for Technology in Education [ISTE] (2007). The national educational technology standards and performance indicators for students. Eugene, OR: ISTE.
  • International Technology Education Association [ITEA] (2007). Standards for technological literacy: content for the study of technology. Reston, VA: Author.
  • Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New Jersey: Wiley.
  • Kim, K. H. (2011). The Creativity Crisis: The Decrease in Creative Thinking Scores on the Torrance Tests of Creative Thinking. Creativity Research Journal, 23(4), 285–295.
  • Lasky, D., & Yoon, S. A. (2011). Making space for the act of making: creativity in the engineering design classroom. Science Educator, 20(1), 34–43.
  • Lee, C. S., & Kolodner, J. L. (2011). Scaffolding students’ development of creative design skills: A curriculum reference model. Journal of Educational Technology & Society, 14(1), 3–15.
  • Mangold, J., Robinson, S. (2013). The engineering design process as a problem solving and learning tool in K-12 classrooms. 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia.
  • Milli Eğitim Bakanlığı [MEB], 2018. Fen Bilimleri Dersi Öğretim Programı. Ankara: Talim ve Terbiye Başkanlığı.
  • Mentzer, N. (2011). High school engineering and technology education integration through design challenges. Journal of STEM Teacher Education, 48(2), 103–136.
  • Moore, T.J., Stohlmann, M.S., Wang, H.-H., Tank, K.M., & Roehrig, G.H. (2014). Implementation and integration of engineering in K-12 STEM education. J. Strobel, S. Purzer, & M. Cardella (Ed.), Engineering in precollege settings: Research into practice. Rotterdam, the Netherlands: Sense Publishers.
  • National Academy of Engineering [NAE]. (2008). Changing the conversation: messages for improving public understanding of engineering. Washington, DC: National Academies Press.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • National Research Council [NRC]. (2012). A framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Partnership for 21st Century Skills [P21] (2013). A Report and mile guide for 21th century skills. Washington DC: Partnership for 21st Century Skills.
  • Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: definitions and the ınquiry cycle. Educational Research Review, 14(2015), 47-61.
  • Purzer, S., Moore, T., Baker, D., Berland, L. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: engineering. https://narst.org/blog/ngss-engineering.
  • Purzer, Ş., Goldstein, M. H., Adams, R. S., Xie, C., Nourian, S. (2015). An exploratory study of ınformed engineering design behaviors associated with scientific explanations. International Journal of STEM Education, 2(1), 9.
  • Siew, N. M. (2017). Integrating STEM in an engineering design process: The learning experience of rural secondary school students in an outreach challenge program. The Eurasia Proceedings of Educational & Social Sciences (EPESS), 2017(6), 128–141.
  • Starkey, E., Toh, C. A., & Miller, S. R. (2016). Abandoning creativity: The evolution of creative ideas in engineering design course projects. Design Studies, 47, 47-72.
  • Tekmen-Aracı, Y., & Mann, L. (2019). Instructor approaches to creativity in engineering design education. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(2), 395–402.
  • Valjak, F. (2017). Creativity in the engineering design process (Report, UDC 62:65.01:159.954). Research Report. University of Zagreb, Faculty of Mechanical Engineering and naval Architecture. https ://www.fsb.unizg .hr/brodo gradn ja/UZIR-Essay -2017-Valja k.pdf.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, 15.958.1-15.958.21. https://dl.tufts.edu/concern/pdfs/2227n1944
  • Yin, R. K. (2002). Case study research: design and methods. Thousand Oaks, CA: Sage Publications.
Year 2022, Volume: 10 Issue: 2, 442 - 465, 20.12.2022
https://doi.org/10.56423/fbod.1180830

Abstract

References

  • Asghar, A., Ellington, R., Rice, E., Johnson, F., & Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125.
  • Assessment and Teaching of 21st Century Skills [ATC21S] (2013). Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills (p. 36). Dordrecht: Springer.
  • Ayaz, E. & Sarikaya, R. (2021). The effect of engineering design based science teaching on decision making, scientific creativity and design skills of classroom teacher candidates. Journal of Education in Science, Environment and Health (JESEH), 7(4), 309-328. https://doi.org/10.21891/jeseh.961060
  • Beghetto, R. A. (2007). Ideational code‐switching: Walking the talk about supporting student creativity in the classroom. Roeper Review, 29(4), 265-270
  • Bonnardel, N. (2000). Towards understanding and supporting creativity in design. Knowledge-Based Systems, 13, 505–513.
  • Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi öğretmen adaylarının karar verme becerisi, bilimsel süreç becerileri ve sürece yönelik algılarına etkisi. Doktora Tezi, Gazi Üniversitesi, Ankara.
  • Bozkurt Altan, E., Yamak, H., Kirikkaya, E. B., & Kavak, N. (2018). The use of design-based learning for STEM education and its effectiveness on decision making skills. Universal Journal of Educational Research, 6(12), 2888-2906.
  • Bozkurt Altan, E. (2021). Karar verme becerisi. E. Kabataş Memiş (Ed.) 21. Yüzyıl Becerileri için Fen Eğitimi Öğrenmeyi Derinleştirme (s.192-209). Ankara: Pegem Akademi.
  • Bozkurt Altan, E., Tan, S. (2021). Concepts of creativity in design based learning in STEM education. Int J Technol Des Educ, 31, 503–529.
  • Brunsell, E. (2012) The engineering design process. Brunsell, E. (Ed.) Integrating engineering+ science in your classroom. Arlington, Virginia: National Science Teacher Association [NSTA] Press.
  • Cajas, F. 2001. The science/technology interaction: implications for science literacy. Journal of Research in Science Teaching, 38(7), 715–729.
  • Chabalengula, V. M., & Mumba, F. (2017). Engineering design skills coverage in K-12 engineering program curriculum materials in the USA. International Journal of Science Education, 39(16), 2209-2225.
  • Chao, J., Xie, C., Nourian, S., Chen, G., Bailey, S., Goldstein, M. H., & Tutwiler, M. S. 2017. Bridging the design-science gap with tools: science learning and design behaviors in a simulated environment for engineering design. Journal of Research in Science Teaching, 54(8), 1049–1096.
  • Charyton, C. (2014). Creative engineering design assessment. London: Springer.
  • Chevalier, A. & Ivory, M.Y. (2003). Web site designs: influences of designer’s expertise and design constraints. International Journal of Human–Computer Studies, 58 (1), 57–87.
  • Cszikszentmihalyi, M. (1996). Creativity-flow and the psychology of discovery and invention. New York: Harpercollins Publisher.
  • Denson, C. D. (2015). Developing instrumentation for assessing creativity in engineering design. Journal of Technology Education, 27(1), 23–40.
  • Engineering is Elementary (EİE), 2013. Here comes the sun: Engineering insulated homes. United States of America: Museum of Science.
  • Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitimi. Doktora tezi, Marmara Üniversitesi, İstanbul
  • Ercan, S. & Bozkurt, E. (2013). Expectations from engineering applications in science education: decision making skill. IOSTE Eurasian Regional Symposium & Brokerage event Horizon 2020, Antalya, TURKEY.
  • Fila, N. D. & Purzer, S. (2013). The quality of engineering decision-making in student design teams. 120th ASEE Annual Conference & Exposition, June 23-26, Atlanta, USA.
  • Fortus, D., Krajcik, J., Dershimer, R. C., Marx, R. W., Mamlok‐Naaman, R. (2005). Design‐based science and real‐world problem‐solving. International Journal of Science Education, 27(7), 855-879.
  • Glesne, C. 2013. Nitel Araştırmaya Giriş, Çeviri: Ersoy, A. Ankara: Anı Yayıncılık.
  • Goldstein, M. H., Omar, S. A., Purzer, S., & Adams, R. (2018). Comparing two approaches to engineering design in the seventh grade science classroom. International Journal Engineering Education, 6(4), 381–397.
  • Guilford, J. P. (1950). Creativity. American Psychologist,5, 444–454.
  • Guilford, J. P. (1967a). The Nature of Human Intelligence, New York: McGraw-Hill Inc.
  • Guilford, J. P. (1967b). Creativity: yesterday, today, and tomorrow. The Journal of Creative Behavior, 1(1), 3–14.
  • Hacıoğlu, Y., & Gülhan, F. (2021). The effects of stem education on the students’ critical thinking skills and stem perceptions. Journal of Education in Science Environment and Health, 7(2), 139-155.
  • Hamilton, E., Lesh, R., Lester, F., Brilleslyper, M. 2008. Model-Eliciting Activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2), 1–25.
  • Hathcock, S. J., Dickerson, D. L., Eckhoff, A., & Katsioloudis, P. (2015). Scaffolding for creative product possibilities in a design-based STEM activity. Research in Science Education, 45(5), 727–748.
  • Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61, 569–598.
  • Horowitz, R. (1999). Creative problem solving in engineering design. Doctoral dissertation, Tel-Aviv University.
  • Howard, T., Culley, S., Dekoninck, E. (2008). Creativity in the Engineering Design Process. International Conference in Engineering Design, Cite Des Sciences Et De L’industrie, Paris: France.
  • Hynes, M. M., Portsmore, M., Dare, E., Milto, E., Rogers, C., & Hammer, D. (2011). Infusing engineering design into high school STEM courses. National Center for Engineering and Technology Education. http://ncete .org/flash /pdfs/Infus ing%20Eng ineer ing%20Hyn es.pdf.
  • International Society for Technology in Education [ISTE] (2007). The national educational technology standards and performance indicators for students. Eugene, OR: ISTE.
  • International Technology Education Association [ITEA] (2007). Standards for technological literacy: content for the study of technology. Reston, VA: Author.
  • Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New Jersey: Wiley.
  • Kim, K. H. (2011). The Creativity Crisis: The Decrease in Creative Thinking Scores on the Torrance Tests of Creative Thinking. Creativity Research Journal, 23(4), 285–295.
  • Lasky, D., & Yoon, S. A. (2011). Making space for the act of making: creativity in the engineering design classroom. Science Educator, 20(1), 34–43.
  • Lee, C. S., & Kolodner, J. L. (2011). Scaffolding students’ development of creative design skills: A curriculum reference model. Journal of Educational Technology & Society, 14(1), 3–15.
  • Mangold, J., Robinson, S. (2013). The engineering design process as a problem solving and learning tool in K-12 classrooms. 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia.
  • Milli Eğitim Bakanlığı [MEB], 2018. Fen Bilimleri Dersi Öğretim Programı. Ankara: Talim ve Terbiye Başkanlığı.
  • Mentzer, N. (2011). High school engineering and technology education integration through design challenges. Journal of STEM Teacher Education, 48(2), 103–136.
  • Moore, T.J., Stohlmann, M.S., Wang, H.-H., Tank, K.M., & Roehrig, G.H. (2014). Implementation and integration of engineering in K-12 STEM education. J. Strobel, S. Purzer, & M. Cardella (Ed.), Engineering in precollege settings: Research into practice. Rotterdam, the Netherlands: Sense Publishers.
  • National Academy of Engineering [NAE]. (2008). Changing the conversation: messages for improving public understanding of engineering. Washington, DC: National Academies Press.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • National Research Council [NRC]. (2012). A framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Partnership for 21st Century Skills [P21] (2013). A Report and mile guide for 21th century skills. Washington DC: Partnership for 21st Century Skills.
  • Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: definitions and the ınquiry cycle. Educational Research Review, 14(2015), 47-61.
  • Purzer, S., Moore, T., Baker, D., Berland, L. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: engineering. https://narst.org/blog/ngss-engineering.
  • Purzer, Ş., Goldstein, M. H., Adams, R. S., Xie, C., Nourian, S. (2015). An exploratory study of ınformed engineering design behaviors associated with scientific explanations. International Journal of STEM Education, 2(1), 9.
  • Siew, N. M. (2017). Integrating STEM in an engineering design process: The learning experience of rural secondary school students in an outreach challenge program. The Eurasia Proceedings of Educational & Social Sciences (EPESS), 2017(6), 128–141.
  • Starkey, E., Toh, C. A., & Miller, S. R. (2016). Abandoning creativity: The evolution of creative ideas in engineering design course projects. Design Studies, 47, 47-72.
  • Tekmen-Aracı, Y., & Mann, L. (2019). Instructor approaches to creativity in engineering design education. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(2), 395–402.
  • Valjak, F. (2017). Creativity in the engineering design process (Report, UDC 62:65.01:159.954). Research Report. University of Zagreb, Faculty of Mechanical Engineering and naval Architecture. https ://www.fsb.unizg .hr/brodo gradn ja/UZIR-Essay -2017-Valja k.pdf.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, 15.958.1-15.958.21. https://dl.tufts.edu/concern/pdfs/2227n1944
  • Yin, R. K. (2002). Case study research: design and methods. Thousand Oaks, CA: Sage Publications.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Araştırma Makalesi
Authors

Esra Bozkurt Altan 0000-0002-5592-1726

Sema Tan 0000-0002-9816-8930

Publication Date December 20, 2022
Submission Date September 27, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Bozkurt Altan, E., & Tan, S. (2022). Fen Bilgisi Öğretmen Adaylarının Mühendislik Tasarımlarının Yaratıcılık ve Karar Verme Unsurları Bakımından İncelenmesi. Fen Bilimleri Öğretimi Dergisi, 10(2), 442-465. https://doi.org/10.56423/fbod.1180830

Dergide yayımlanmak üzere gönderilen çalışmaların daha önce hiç bir yerde yayımlanmamış ve aynı anda başka bir dergiye gönderilmemiş olması gerekir. Çalışmaların başka dergilerde daha önce yayımlanmamış olması ve/veya değerlendirme sürecinde olmaması yazar(lar)ın sorumluluğundandır. Bu tür bir husus tespit edildiğinde çalışma yazar(lar)a geri gönderilir.

Dergiye çalışma göndermeyi düşünen araştırmacılar https://dergipark.org.tr/tr/pub/fbod dergi adresinde bulunan “Yazım Kuralları”, "Yazarlar İçin Rehber" ve “Makale Gönder” sayfalarını inceleyerek çalışmalarını internet ortamında gönderebilirler. FBÖD ücretsiz bir dergi olup, dergiye gönderilen çalışmalar için yazarlardan değerlendirme veya basım ücreti talep edilmemektedir. Dergide yayımlanan çalışmaların tamamının tam metinleri ücretsiz erişime açıktır. Dergide yayımlanan makalelerden kaynak gösterilmek suretiyle alıntı yapılabilir.

Dergide yayımlamak üzere çalışmalarınızı bekler, derginin ülkemizde fen bilimleri eğitimi ve öğretiminin gelişmesi, bilim okur-yazarlığının yaygınlaşması ve öğretmenlerin uygulamaya dönük ihtiyaçlarının karşılanması amaçlarına katkı sağlamasını temenni ederiz.

EDİTÖR