Research Article
BibTex RIS Cite
Year 2024, , 134 - 142, 31.07.2024
https://doi.org/10.54974/fcmathsci.1393349

Abstract

References

  • Adilov G., Yeşilce İ., B^{−1} -convex sets and B^{−1} -measurable maps, Numerical Functional Analysis and Optimization, 33(2), 131-141, 2012.
  • Baskakov V.A., An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR, 113(2), 249-251, 1957.
  • Briec W., Horvath C.D., B-convexity, Optimization, 53(2), 103-127, 2004.
  • Briec W., Liang Q.B., On some semilattice structures for production technologies, European Journal of Operational Research, 215(3), 740-749, 2011.
  • Briec W., Yeşilce İ., Ky-Fan inequality, Nash equilibria in some idempotent and harmonic convex structure, Journal of Mathematical Analysis and Applications, 508(1), 1-25, 2022.
  • Gal S.G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhauser-Boston, 2008.
  • Kemali S., Yeşilce İ., Adilov G., B-convexity, B^{−1} -convexity and their comparison, Numerical Functional Analysis and Optimization, 36(2), 133-146, 2015.
  • Meleşteu A.D., About the B-concavity of functions with many variables, Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 31(1), 199-206, 2023.
  • Stancu D.D., Asupra unei generilazari a polinoamelor lui Bernstein, Studia Universitatis Babes- Bolyai, 12(2), 31-45, 1969.
  • Szász O., Generalization of S. Bernstein’s polynomials to the infinite interval, Journal of Research of the National Bureau of Standards, 45(3), 239-245, 1950.
  • Tunç T., Uzun M., On the preservation of B-convexity and B-concavity of functions by Bernstein Operators, Journal of Contemporary Applied Mathematics, 10(2), 77-83, 2020.
  • Uzun M., Tunç T., B-convexity and B-concavity preserving property of two-dimensional Bernstein operators, 7th Ifs and Contemporary Mathematics Conference, Türkiye, 1-7, 25-29 May 2021.
  • Yeşilce İ., Adilov G., Hermite-Hadamard inequalities for B-convex and B^{−1} -convex functions, International Journal of Nonlinear Analysis and Applications, 8(2), 225-233, 2017.

On Some Positive Linear Operators Preserving the B^{-1}-Convexity of Functions

Year 2024, , 134 - 142, 31.07.2024
https://doi.org/10.54974/fcmathsci.1393349

Abstract

In the study, we first give an inequality that non-negative differentiable functions must satisfy to be B^{-1}-convex. Then, using the inequality, we show that the B^{-1}-convexity property of functions is preserved by Bernstein-Stancu operators, Sz'asz-Mirakjan operators and Baskakov operators. In addition, we compare the concepts B^{-1}-convexity and B-concavity of functions.

References

  • Adilov G., Yeşilce İ., B^{−1} -convex sets and B^{−1} -measurable maps, Numerical Functional Analysis and Optimization, 33(2), 131-141, 2012.
  • Baskakov V.A., An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR, 113(2), 249-251, 1957.
  • Briec W., Horvath C.D., B-convexity, Optimization, 53(2), 103-127, 2004.
  • Briec W., Liang Q.B., On some semilattice structures for production technologies, European Journal of Operational Research, 215(3), 740-749, 2011.
  • Briec W., Yeşilce İ., Ky-Fan inequality, Nash equilibria in some idempotent and harmonic convex structure, Journal of Mathematical Analysis and Applications, 508(1), 1-25, 2022.
  • Gal S.G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhauser-Boston, 2008.
  • Kemali S., Yeşilce İ., Adilov G., B-convexity, B^{−1} -convexity and their comparison, Numerical Functional Analysis and Optimization, 36(2), 133-146, 2015.
  • Meleşteu A.D., About the B-concavity of functions with many variables, Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 31(1), 199-206, 2023.
  • Stancu D.D., Asupra unei generilazari a polinoamelor lui Bernstein, Studia Universitatis Babes- Bolyai, 12(2), 31-45, 1969.
  • Szász O., Generalization of S. Bernstein’s polynomials to the infinite interval, Journal of Research of the National Bureau of Standards, 45(3), 239-245, 1950.
  • Tunç T., Uzun M., On the preservation of B-convexity and B-concavity of functions by Bernstein Operators, Journal of Contemporary Applied Mathematics, 10(2), 77-83, 2020.
  • Uzun M., Tunç T., B-convexity and B-concavity preserving property of two-dimensional Bernstein operators, 7th Ifs and Contemporary Mathematics Conference, Türkiye, 1-7, 25-29 May 2021.
  • Yeşilce İ., Adilov G., Hermite-Hadamard inequalities for B-convex and B^{−1} -convex functions, International Journal of Nonlinear Analysis and Applications, 8(2), 225-233, 2017.
There are 13 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

Mustafa Uzun 0000-0003-4661-7244

Tuncay Tunç 0000-0002-3061-7197

Publication Date July 31, 2024
Submission Date November 21, 2023
Acceptance Date February 19, 2024
Published in Issue Year 2024

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.