Research Article
BibTex RIS Cite

Year 2026, Volume: 7 Issue: 1, 1 - 16, 31.01.2026

Abstract

References

  • Akça İ.İ., Avcıoğlu O., Equivalence between (pre)cat1 -R-algebroids and (pre)crossed modules of R-algebroids, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 65(113), no. 3, 267-288, 2022.
  • Alp M., Pullback crossed modules of algebroids, Iranian Journal of Science and Technology, Transaction A, 32(A1), 1-5, 2008.
  • Alp M., Pushout crossed modules of algebroids, Iranian Journal of Science and Technology, Transaction A, 32(A3), 175-181, 2008.
  • Amgott S.M., Separable categories, Journal of Pure and Applied Algebra, 40, 1-14, 1986.
  • Avcıoğlu O., Homotopies of crossed modules of R-algebroids, Applied Categorical Structures, 29, 827-847, 2021.
  • Barratt M.G., Homotopy ringoids and homotopy groups, The Quarterly Journal of Mathematics, 5(1), 271-290, 1954.
  • Bénabou J., Catégories relatives, Comptes rendus de l’Académie des Sciences, 260, 3824-3827, 1965.
  • Brown R., Topology and Groupoids, Booksurge LLC, Charleston, S. Carolina, 2006.
  • Brown R., Higgins P.J., Sivera R., Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids, EMS Tracts in Mathematics 15, European Mathematical Society (EMS), Zürich, 2011.
  • Brown R., Hardie K.A., Kamps K.H., Porter T., A homotopy double groupoid of a Hausdorff space, Theory and Applications of Categories, 10, 71-93, 2002.
  • Borceux F., Enriched Category Theory, In: Handbook of Categorical Algebra 2 (pp. 291–348), Encyclopedia of Mathematics and its Applications 51, Cambridge University Press, 1994.
  • Diaz-Vargas J., Vargas de los Santos G., The number of homomorphisms from Zn to Zm, Abstraction & Application, 13, 1-3, 2015.
  • Gallian J.A., Van Buskirk J., The number of homomorphisms from Zm into Zn, The American Mathematical Monthly, 91(3), 196-197, 1984.
  • Gürmen Alansal Ö., Ulualan E., Simplicial algebroids and internal categories within R-algebroids, Tbilisi Mathematical Journal, 13(1), 113-121, 2020.
  • Hilton P.J., Ledermann W., Homology and ringoids. I, Mathematical Proceedings of the Cambridge Philosophical Society, 54(2), 152-167, 1958.
  • İçen İ., Özcan A.F., Gürsoy M.H., Topological group-groupoids and their coverings, Indian Journal of Pure and Applied Mathematics, 36(9), 493-502, 2005.
  • Kahrıman G., Bimultipliers of R-algebroids, Ikonion Journal of Mathematics, 6(1), 30-40, 2024.
  • Kelly G.M., Tensor products in categories, Journal of Algebra, 2(1), 15-37, 1965.
  • Kelly G.M., Basic Concepts of Enriched Category Theory, Cambridge University Press, London Mathematical Society Lecture Note Series 64, 1982. Reprints in Theory and Applications of Categories, No. 10, 1-136, 2005.
  • Linton F.E.J., Autonomous categories and duality of functors, Journal of Algebra, 2(3), 315-349, 1965.
  • MacLane S., Categorical algebra, Bulletin of the American Mathematical Society, 71(1), 40-106, 1965.
  • Maranda J.-M., Formal categories, Canadian Journal of Mathematics, 17, 758-801, 1965.
  • Mitchell B., Theory of Categories, Academic Press, New York and London, 1965.
  • Mitchell B., Rings with several objects, Advances in Mathematics, 8(1), 1-161, 1972.
  • Mitchell B., Some applications of module theory to functor categories, Bulletin of the American Mathematical Society, 84(5), 867-885, 1978.
  • Mitchell B., Separable algebroids, Memoirs of the American Mathematical Society, 57, no. 333, iv+96 pp., 1985.
  • Mosa G.H., Higher Dimensional Algebroids and Crossed Complexes, Ph.D. Thesis, University of Wales, Bangor, U.K., 1986.
  • Mucuk O., İçen İ., Extendibility, monodromy, and local triviality for topological groupoids, International Journal of Mathematics and Mathematical Sciences, 27, 131-140, 2001.
  • Sehgal S.K., Ringoids with minimum condition, Mathematische Zeitschrift, 83, 395-408, 1964.

ℤ-Algebroid Structure of the Category of Groups ℤ_n and Its Subprealgebroids

Year 2026, Volume: 7 Issue: 1, 1 - 16, 31.01.2026

Abstract

In this study, we show that the category Z of all cyclic groups ℤ_n has a ℤ-algebroid structure. Moreover, we examine and characterize homsets of Z and see that each homset has a cyclic group structure. Furthermore, through narrowing homsets of Z, we obtain subpre-ℤ-algebroids of Z. In particular, for each positive integer t we get a different subpre-ℤ-algebroid Z_t of Z, where Z_1 = Z. As a consequence, we obtain a countably infinite set of (pre)algebroid samples for their use in future studies.

Ethical Statement

The author declares that the materials and methods used in his study do not require ethical committee and/or legal special permission.

References

  • Akça İ.İ., Avcıoğlu O., Equivalence between (pre)cat1 -R-algebroids and (pre)crossed modules of R-algebroids, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 65(113), no. 3, 267-288, 2022.
  • Alp M., Pullback crossed modules of algebroids, Iranian Journal of Science and Technology, Transaction A, 32(A1), 1-5, 2008.
  • Alp M., Pushout crossed modules of algebroids, Iranian Journal of Science and Technology, Transaction A, 32(A3), 175-181, 2008.
  • Amgott S.M., Separable categories, Journal of Pure and Applied Algebra, 40, 1-14, 1986.
  • Avcıoğlu O., Homotopies of crossed modules of R-algebroids, Applied Categorical Structures, 29, 827-847, 2021.
  • Barratt M.G., Homotopy ringoids and homotopy groups, The Quarterly Journal of Mathematics, 5(1), 271-290, 1954.
  • Bénabou J., Catégories relatives, Comptes rendus de l’Académie des Sciences, 260, 3824-3827, 1965.
  • Brown R., Topology and Groupoids, Booksurge LLC, Charleston, S. Carolina, 2006.
  • Brown R., Higgins P.J., Sivera R., Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids, EMS Tracts in Mathematics 15, European Mathematical Society (EMS), Zürich, 2011.
  • Brown R., Hardie K.A., Kamps K.H., Porter T., A homotopy double groupoid of a Hausdorff space, Theory and Applications of Categories, 10, 71-93, 2002.
  • Borceux F., Enriched Category Theory, In: Handbook of Categorical Algebra 2 (pp. 291–348), Encyclopedia of Mathematics and its Applications 51, Cambridge University Press, 1994.
  • Diaz-Vargas J., Vargas de los Santos G., The number of homomorphisms from Zn to Zm, Abstraction & Application, 13, 1-3, 2015.
  • Gallian J.A., Van Buskirk J., The number of homomorphisms from Zm into Zn, The American Mathematical Monthly, 91(3), 196-197, 1984.
  • Gürmen Alansal Ö., Ulualan E., Simplicial algebroids and internal categories within R-algebroids, Tbilisi Mathematical Journal, 13(1), 113-121, 2020.
  • Hilton P.J., Ledermann W., Homology and ringoids. I, Mathematical Proceedings of the Cambridge Philosophical Society, 54(2), 152-167, 1958.
  • İçen İ., Özcan A.F., Gürsoy M.H., Topological group-groupoids and their coverings, Indian Journal of Pure and Applied Mathematics, 36(9), 493-502, 2005.
  • Kahrıman G., Bimultipliers of R-algebroids, Ikonion Journal of Mathematics, 6(1), 30-40, 2024.
  • Kelly G.M., Tensor products in categories, Journal of Algebra, 2(1), 15-37, 1965.
  • Kelly G.M., Basic Concepts of Enriched Category Theory, Cambridge University Press, London Mathematical Society Lecture Note Series 64, 1982. Reprints in Theory and Applications of Categories, No. 10, 1-136, 2005.
  • Linton F.E.J., Autonomous categories and duality of functors, Journal of Algebra, 2(3), 315-349, 1965.
  • MacLane S., Categorical algebra, Bulletin of the American Mathematical Society, 71(1), 40-106, 1965.
  • Maranda J.-M., Formal categories, Canadian Journal of Mathematics, 17, 758-801, 1965.
  • Mitchell B., Theory of Categories, Academic Press, New York and London, 1965.
  • Mitchell B., Rings with several objects, Advances in Mathematics, 8(1), 1-161, 1972.
  • Mitchell B., Some applications of module theory to functor categories, Bulletin of the American Mathematical Society, 84(5), 867-885, 1978.
  • Mitchell B., Separable algebroids, Memoirs of the American Mathematical Society, 57, no. 333, iv+96 pp., 1985.
  • Mosa G.H., Higher Dimensional Algebroids and Crossed Complexes, Ph.D. Thesis, University of Wales, Bangor, U.K., 1986.
  • Mucuk O., İçen İ., Extendibility, monodromy, and local triviality for topological groupoids, International Journal of Mathematics and Mathematical Sciences, 27, 131-140, 2001.
  • Sehgal S.K., Ringoids with minimum condition, Mathematische Zeitschrift, 83, 395-408, 1964.
There are 29 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Osman Avcıoğlu 0000-0002-5415-6129

Submission Date August 24, 2024
Acceptance Date January 14, 2026
Publication Date January 31, 2026
Published in Issue Year 2026 Volume: 7 Issue: 1

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.