Research Article
BibTex RIS Cite
Year 2025, Volume: 6 Issue: 2, 93 - 107, 30.07.2025
https://doi.org/10.54974/fcmathsci.1545672

Abstract

References

  • Abbas M., Murtaza G., Romaguera S., Soft contraction theorem, Journal of Nonlinear and Convex Analysis, 16(3), 423-435, 2015.
  • Abbas M., Murtaza G., Romaguera S., On the fixed point theory of soft metric spaces, Fixed Point Theory and Applications, 2016(1), 1-11, 2016.
  • Aygünoǧlu A., Aygün H., Some notes on soft topological spaces, Neural Computing and Applications, 21(1), 113-119, 2012.
  • Bibiloni-Femenias M.D.M., Valero O., Modular quasi-pseudo metrics and the aggregation problem, Mathematics, 12(12), 1826, 2024.
  • Bilet V., Dovgoshey O., On monoids of metric preserving functions, Frontiers in Applied Mathematics and Statistics, 10, 1420671, 2024.
  • Bilet V., Dovgoshey O., Shanin R., Ultrametric preserving functions and weak similarities of ultrametric spaces, p-Adic Numbers, Ultrametric Analysis and Applications, 13(3), 186-203, 2021.
  • Borsik J., Dobos J., Functions whose composition with every metric is a metric, Mathematica Slovaca, 31, 3-12, 1981.
  • Çaǧman N., Enginoǧlu S., Soft set theory and uni–int decision making, European Journal of Operational Research, 207, 848-855, 2010.
  • Çetkin V., Güner E., Aygün H., On 2S-metric spaces, Soft Computing, 24(17), 12731-12742, 2020.
  • Das S., Samanta S.K., Soft real set, soft real number and their properties, Journal of Fuzzy Mathematics, 20(3), 551-576, 2012.
  • Das S., Samanta S.K., On soft metric spaces, Journal of Fuzzy Mathematics, 21(3), 707-734, 2013.
  • Doboš J., Metric Preserving Functions, Vydavatel’stvo Štroffek, 1998.
  • Dovgoshey O., Martio O., Functions transferring metrics to metrics, Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 54(1), 237-261, 2013.
  • Dubois D., Prade H., Gradual elements in a fuzzy set, Soft Computing, 12, 165-175, 2008.
  • Gregori V., Miñana J.J., Valero O., A technique for fuzzifying metric spaces via metric preserving mappings, Fuzzy Sets and Systems, 330, 1-15, 2018.
  • Güner E., Çetkin V., Aygün H., Fixed point results for Ã-contractions in soft metric spaces, Sigma Journal of Engineering and Natural Sciences, 36(2), 315-323, 2018.
  • Güner E., Çetkin V., Aygün H., Soft fixed point theorems in terms of soft altering distance function, Sigma Journal of Engineering and Natural Sciences, 9(3), 285-293, 2018.
  • Jachymski J., Turobos F., On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(3), 159, 2020.
  • Maji P.K., Biswas R., Roy A.R., Soft set theory, Computers and Mathematics with Applications, 45, 555-562, 2003.
  • Majumdar P., Samanta S.K., On soft mappings, Computers and Mathematics with Applications, 60(9), 2666-2672, 2010.
  • Miñana J.J., Valero O., On partial metric preserving functions and their characterization, Filomat, 34(7), 2315-2327, 2020.
  • Molodtsov D., Soft set theory-first results, Computers and Mathematics with Applications, 37, 19-31, 1999.
  • Pedraza T., Ramos-Canós J., Rodríguez-López J., Aggregation of weak fuzzy norms, Symmetry, 13(10), 1908, 2021.
  • Pedraza T., Rodríguez-López J., Valero O., Aggregation of fuzzy quasi-metrics, Information Sciences, 581, 362-389, 2021.
  • Pongsriiam P., Termwuttipong I., Remarks on ultrametrics and metric‐preserving functions, Abstract and Applied Analysis, 2014(1), 163258, 2014.
  • Samphavat S., Khemaratchatakumthorn T., Pongsriiam P., Remarks on b-metrics, ultrametrics, and metric-preserving functions, Mathematica Slovaca, 70(1), 61-70, 2020.
  • Samphavat S., Prinyasart T., On ultrametrics, b-metrics, w-distances, metric-preserving functions, and fixed point theorems, Fixed Point Theory and Algorithms for Sciences and Engineering, 2024(1), 9, 2024.
  • Shabir M., Naz M., On soft topological spaces, Computers and Mathematics with Applications, 61, 1786-1799, 2011.
  • Taşköprü K., Altıntaş İ., A new approach for soft topology and soft function via soft element, Mathematical Methods in the Applied Sciences, 44(9), 7556-7570, 2021.
  • Vallin R.W., Dovgoshey O.A., P-adic metric preserving functions and their analogues, Mathematica Slovaca, 71(2), 391-408, 2021.
  • Varol B.P., Aygün H., Soft sets over power sets: Generalities and applications to topology, Journal of Intelligent and Fuzzy Systems, 29(1), 389-395, 2015.
  • Varol B.P., Aygün H., On soft Hausdorff spaces, Annals of Fuzzy Mathematics and Informatics, 5(1), 15-24, 2013.
  • Varol B.P., Shostak E., Aygün H., A new approach to soft topology, Hacettepe Journal of Mathematics and Statistics, 41(5), 731-741, 2012.
  • Wilson W.A., On certain types of continuous transformations of metric spaces, American Journal of Mathematics, 57(1), 62-68, 1935.
  • Zadeh L.A., Fuzzy sets, Information and Control, 8(3), 338-353, 1965.

Introduction to Soft Metric Preserving Functions

Year 2025, Volume: 6 Issue: 2, 93 - 107, 30.07.2025
https://doi.org/10.54974/fcmathsci.1545672

Abstract

In this study, we aim to present the notion of soft metric preserving functions (SMPFs) which allows us to transform a soft metric into another one. We study some properties of SMPFs and investigate some characterizations to decide whether a soft function is soft metric preserving or not. Then, we show that the soft topology induced by soft metric was not preserved under SMPFs, present the stronger concept for these functions and also research the relationships of this concept with continuity.

Ethical Statement

The authors declare that the materials and methods used in their study do not require ethical committee and/or legal special permission.

Supporting Institution

This research is part of project PID2022 - 139248NB - I00 funded by MCIN/AEI/10.13039/ 501100011033 and “ERDF A way of making Europe”.

References

  • Abbas M., Murtaza G., Romaguera S., Soft contraction theorem, Journal of Nonlinear and Convex Analysis, 16(3), 423-435, 2015.
  • Abbas M., Murtaza G., Romaguera S., On the fixed point theory of soft metric spaces, Fixed Point Theory and Applications, 2016(1), 1-11, 2016.
  • Aygünoǧlu A., Aygün H., Some notes on soft topological spaces, Neural Computing and Applications, 21(1), 113-119, 2012.
  • Bibiloni-Femenias M.D.M., Valero O., Modular quasi-pseudo metrics and the aggregation problem, Mathematics, 12(12), 1826, 2024.
  • Bilet V., Dovgoshey O., On monoids of metric preserving functions, Frontiers in Applied Mathematics and Statistics, 10, 1420671, 2024.
  • Bilet V., Dovgoshey O., Shanin R., Ultrametric preserving functions and weak similarities of ultrametric spaces, p-Adic Numbers, Ultrametric Analysis and Applications, 13(3), 186-203, 2021.
  • Borsik J., Dobos J., Functions whose composition with every metric is a metric, Mathematica Slovaca, 31, 3-12, 1981.
  • Çaǧman N., Enginoǧlu S., Soft set theory and uni–int decision making, European Journal of Operational Research, 207, 848-855, 2010.
  • Çetkin V., Güner E., Aygün H., On 2S-metric spaces, Soft Computing, 24(17), 12731-12742, 2020.
  • Das S., Samanta S.K., Soft real set, soft real number and their properties, Journal of Fuzzy Mathematics, 20(3), 551-576, 2012.
  • Das S., Samanta S.K., On soft metric spaces, Journal of Fuzzy Mathematics, 21(3), 707-734, 2013.
  • Doboš J., Metric Preserving Functions, Vydavatel’stvo Štroffek, 1998.
  • Dovgoshey O., Martio O., Functions transferring metrics to metrics, Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 54(1), 237-261, 2013.
  • Dubois D., Prade H., Gradual elements in a fuzzy set, Soft Computing, 12, 165-175, 2008.
  • Gregori V., Miñana J.J., Valero O., A technique for fuzzifying metric spaces via metric preserving mappings, Fuzzy Sets and Systems, 330, 1-15, 2018.
  • Güner E., Çetkin V., Aygün H., Fixed point results for Ã-contractions in soft metric spaces, Sigma Journal of Engineering and Natural Sciences, 36(2), 315-323, 2018.
  • Güner E., Çetkin V., Aygün H., Soft fixed point theorems in terms of soft altering distance function, Sigma Journal of Engineering and Natural Sciences, 9(3), 285-293, 2018.
  • Jachymski J., Turobos F., On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(3), 159, 2020.
  • Maji P.K., Biswas R., Roy A.R., Soft set theory, Computers and Mathematics with Applications, 45, 555-562, 2003.
  • Majumdar P., Samanta S.K., On soft mappings, Computers and Mathematics with Applications, 60(9), 2666-2672, 2010.
  • Miñana J.J., Valero O., On partial metric preserving functions and their characterization, Filomat, 34(7), 2315-2327, 2020.
  • Molodtsov D., Soft set theory-first results, Computers and Mathematics with Applications, 37, 19-31, 1999.
  • Pedraza T., Ramos-Canós J., Rodríguez-López J., Aggregation of weak fuzzy norms, Symmetry, 13(10), 1908, 2021.
  • Pedraza T., Rodríguez-López J., Valero O., Aggregation of fuzzy quasi-metrics, Information Sciences, 581, 362-389, 2021.
  • Pongsriiam P., Termwuttipong I., Remarks on ultrametrics and metric‐preserving functions, Abstract and Applied Analysis, 2014(1), 163258, 2014.
  • Samphavat S., Khemaratchatakumthorn T., Pongsriiam P., Remarks on b-metrics, ultrametrics, and metric-preserving functions, Mathematica Slovaca, 70(1), 61-70, 2020.
  • Samphavat S., Prinyasart T., On ultrametrics, b-metrics, w-distances, metric-preserving functions, and fixed point theorems, Fixed Point Theory and Algorithms for Sciences and Engineering, 2024(1), 9, 2024.
  • Shabir M., Naz M., On soft topological spaces, Computers and Mathematics with Applications, 61, 1786-1799, 2011.
  • Taşköprü K., Altıntaş İ., A new approach for soft topology and soft function via soft element, Mathematical Methods in the Applied Sciences, 44(9), 7556-7570, 2021.
  • Vallin R.W., Dovgoshey O.A., P-adic metric preserving functions and their analogues, Mathematica Slovaca, 71(2), 391-408, 2021.
  • Varol B.P., Aygün H., Soft sets over power sets: Generalities and applications to topology, Journal of Intelligent and Fuzzy Systems, 29(1), 389-395, 2015.
  • Varol B.P., Aygün H., On soft Hausdorff spaces, Annals of Fuzzy Mathematics and Informatics, 5(1), 15-24, 2013.
  • Varol B.P., Shostak E., Aygün H., A new approach to soft topology, Hacettepe Journal of Mathematics and Statistics, 41(5), 731-741, 2012.
  • Wilson W.A., On certain types of continuous transformations of metric spaces, American Journal of Mathematics, 57(1), 62-68, 1935.
  • Zadeh L.A., Fuzzy sets, Information and Control, 8(3), 338-353, 1965.
There are 35 citations in total.

Details

Primary Language English
Subjects Theoretical and Applied Mechanics in Mathematics
Journal Section Research Articles
Authors

Elif Güner 0000-0002-6969-400X

Halis Aygün 0000-0003-3263-3884

Publication Date July 30, 2025
Submission Date September 9, 2024
Acceptance Date March 19, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.