Introduction to Soft Metric Preserving Functions
Year 2025,
Volume: 6 Issue: 2, 93 - 107, 30.07.2025
Elif Güner
,
Halis Aygün
Abstract
In this study, we aim to present the notion of soft metric preserving functions (SMPFs) which allows us to transform a soft metric into another one. We study some properties of SMPFs and investigate some characterizations to decide whether a soft function is soft metric preserving or not. Then, we show that the soft topology induced by soft metric was not preserved under SMPFs, present the stronger concept for these functions and also research the relationships of this concept with continuity.
Ethical Statement
The authors declare that the materials and methods used in their study do not require ethical
committee and/or legal special permission.
Supporting Institution
This research is part of project PID2022 - 139248NB - I00 funded by MCIN/AEI/10.13039/ 501100011033 and “ERDF A way of making Europe”.
References
- Abbas M., Murtaza G., Romaguera S., Soft contraction theorem, Journal of Nonlinear and Convex
Analysis, 16(3), 423-435, 2015.
- Abbas M., Murtaza G., Romaguera S., On the fixed point theory of soft metric spaces, Fixed Point
Theory and Applications, 2016(1), 1-11, 2016.
- Aygünoǧlu A., Aygün H., Some notes on soft topological spaces, Neural Computing and Applications,
21(1), 113-119, 2012.
- Bibiloni-Femenias M.D.M., Valero O., Modular quasi-pseudo metrics and the aggregation problem,
Mathematics, 12(12), 1826, 2024.
- Bilet V., Dovgoshey O., On monoids of metric preserving functions, Frontiers in Applied Mathematics
and Statistics, 10, 1420671, 2024.
- Bilet V., Dovgoshey O., Shanin R., Ultrametric preserving functions and weak similarities of ultrametric
spaces, p-Adic Numbers, Ultrametric Analysis and Applications, 13(3), 186-203, 2021.
- Borsik J., Dobos J., Functions whose composition with every metric is a metric, Mathematica Slovaca,
31, 3-12, 1981.
- Çaǧman N., Enginoǧlu S., Soft set theory and uni–int decision making, European Journal of Operational
Research, 207, 848-855, 2010.
- Çetkin V., Güner E., Aygün H., On 2S-metric spaces, Soft Computing, 24(17), 12731-12742, 2020.
- Das S., Samanta S.K., Soft real set, soft real number and their properties, Journal of Fuzzy Mathematics,
20(3), 551-576, 2012.
- Das S., Samanta S.K., On soft metric spaces, Journal of Fuzzy Mathematics, 21(3), 707-734, 2013.
- Doboš J., Metric Preserving Functions, Vydavatel’stvo Štroffek, 1998.
- Dovgoshey O., Martio O., Functions transferring metrics to metrics, Beiträge zur Algebra und
Geometrie/Contributions to Algebra and Geometry, 54(1), 237-261, 2013.
- Dubois D., Prade H., Gradual elements in a fuzzy set, Soft Computing, 12, 165-175, 2008.
- Gregori V., Miñana J.J., Valero O., A technique for fuzzifying metric spaces via metric preserving
mappings, Fuzzy Sets and Systems, 330, 1-15, 2018.
- Güner E., Çetkin V., Aygün H., Fixed point results for Ã-contractions in soft metric spaces, Sigma
Journal of Engineering and Natural Sciences, 36(2), 315-323, 2018.
- Güner E., Çetkin V., Aygün H., Soft fixed point theorems in terms of soft altering distance function,
Sigma Journal of Engineering and Natural Sciences, 9(3), 285-293, 2018.
- Jachymski J., Turobos F., On functions preserving regular semimetrics and quasimetrics satisfying the
relaxed polygonal inequality, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.
Serie A. Matematicas, 114(3), 159, 2020.
- Maji P.K., Biswas R., Roy A.R., Soft set theory, Computers and Mathematics with Applications, 45,
555-562, 2003.
- Majumdar P., Samanta S.K., On soft mappings, Computers and Mathematics with Applications,
60(9), 2666-2672, 2010.
- Miñana J.J., Valero O., On partial metric preserving functions and their characterization, Filomat,
34(7), 2315-2327, 2020.
- Molodtsov D., Soft set theory-first results, Computers and Mathematics with Applications, 37, 19-31,
1999.
- Pedraza T., Ramos-Canós J., Rodríguez-López J., Aggregation of weak fuzzy norms, Symmetry, 13(10),
1908, 2021.
- Pedraza T., Rodríguez-López J., Valero O., Aggregation of fuzzy quasi-metrics, Information Sciences,
581, 362-389, 2021.
- Pongsriiam P., Termwuttipong I., Remarks on ultrametrics and metric‐preserving functions, Abstract
and Applied Analysis, 2014(1), 163258, 2014.
- Samphavat S., Khemaratchatakumthorn T., Pongsriiam P., Remarks on b-metrics, ultrametrics, and
metric-preserving functions, Mathematica Slovaca, 70(1), 61-70, 2020.
- Samphavat S., Prinyasart T., On ultrametrics, b-metrics, w-distances, metric-preserving functions,
and fixed point theorems, Fixed Point Theory and Algorithms for Sciences and Engineering, 2024(1),
9, 2024.
- Shabir M., Naz M., On soft topological spaces, Computers and Mathematics with Applications, 61,
1786-1799, 2011.
- Taşköprü K., Altıntaş İ., A new approach for soft topology and soft function via soft element,
Mathematical Methods in the Applied Sciences, 44(9), 7556-7570, 2021.
- Vallin R.W., Dovgoshey O.A., P-adic metric preserving functions and their analogues, Mathematica
Slovaca, 71(2), 391-408, 2021.
- Varol B.P., Aygün H., Soft sets over power sets: Generalities and applications to topology, Journal of
Intelligent and Fuzzy Systems, 29(1), 389-395, 2015.
- Varol B.P., Aygün H., On soft Hausdorff spaces, Annals of Fuzzy Mathematics and Informatics, 5(1),
15-24, 2013.
- Varol B.P., Shostak E., Aygün H., A new approach to soft topology, Hacettepe Journal of Mathematics
and Statistics, 41(5), 731-741, 2012.
- Wilson W.A., On certain types of continuous transformations of metric spaces, American Journal of
Mathematics, 57(1), 62-68, 1935.
- Zadeh L.A., Fuzzy sets, Information and Control, 8(3), 338-353, 1965.