Research Article
BibTex RIS Cite

Domates (Lycopsersicum esculentum L.)’te sentetik tohum üretiminde aljinat oranlarının depolama zamanına etkisi

Year 2022, , 30 - 35, 30.04.2022
https://doi.org/10.51753/flsrt.1041120

Abstract

Bitki ıslahı, daha yüksek verim ve hastalıklara karşı dayanıklılık için bitki genotipleri arasında bir seçim ve çaprazlama sürecini kapsamaktadır. “Elit” adı verilen kademede ebeveyn tohumu, ıslah sürecinin yeni ve ilk ürünüdür. Elit kademe tohumun daha hızlı üretilmesi, tohumların pazarlanması için çok önemlidir. Sentetik tohum teknolojisi, elit tohumların daha kolay ve daha hızlı geliştirilmesine olanak sağlamaktadır. Bu çalışmada, domates bitkisinin hipokotil eksplantları kullanılarak elde edilen kapsül tohumunun MS kültür ortamı ile çimlenme gücünün belirlenerek tohumların saklama süresinin tespit edilmesi amaçlanmıştır. Bu amaçla domates bitkisi eksplantlarından elde edilen sentetik tohumlar, kaplama sonrası +4 °C’de saklanmış ve depolama sürelerinin rejenerasyona etkileri 0, 30, 60 ve 90 gün sonraki rejenerasyonlarına bakılarak değerlendirilmiştir. Çimlenme gücü ilk gün %80 iken 30 günde %10’a düşmüş ve çimlenme süresi 20 günden 50 güne çıkmıştır. Sonuç olarak hipokotillerin, domates bitkilerinde “Synseed” adı verilen sentetik tohum üretiminde eksplant kaynağı olarak kullanılabileceği görülmüştür.

Supporting Institution

Tarbio Biyoteknoloji

Project Number

TBY-2015-02

Thanks

Yazarlar teşekkür eder.

References

  • Babaoglu, M., Gurel, E., & Ozcan, S. (2001). Bitki biyoteknolojisi doku kulturu ve uygulamaları. (pp. 1-374). Selçuk Üniversitesi Yayınları.
  • Bektas, E., Sokmen, A., & Cuce, M. (2011). Salep bitkisinin tohumlarından sentetik tohum üretimi. I. Salep Orkide Çalıştayı, 117-120.
  • Danial, G. H., & Ibrahim, D. A. (2018) New protocol of Tomato (Lycopersicon esculentum Mill.) in vitro propagation, Kurdistan, Iraq. Innovaciencia, 6(1), 1-13.
  • Das, A., Mahanta, M., Pramanik, B., & Gantait, S. (2021). Artificial seed development of selected anti-diabetic plants, their storage and regeneration: progress and prospect. In: Gantait S., Verma S. K., Sharangi A. B. (eds) Biotechnology of Anti-diabetic Medicinal Plants (pp. 409-436). Springer, Singapore.
  • Erdem, M., & Uysal, H. (2021). Sentetik tohum. Frontiers in Life Sciences and Related Technologies, 2(2), 68-74.
  • Gantait, S., & Mitra, M. (2019). Applications of synthetic seed technology for propagation, storage, and conservation of orchid germplasms. In: Faisal M., Alatar A. (eds) Synthetic Seeds (pp. 301-321). Springer, Cham.
  • Gardi, T., Piccioni, E., & Standardi, A. (1999). Effect of bead nutrient composition on regrowth of stored vitro-derived encapsulated microcuttings of different woody species. Journal of Microencapsulation, 16(1), 13-25.
  • Huda, A. K. M. N., Rahrnau, M., & Bari, M. A. (2007). Effect of carbon source in alginate bead on synthetic seed germination in eggplant (Solanum melongena L.). Journal of Plant Sciences, 2, 538-544.
  • Lledó, M. D., Crespo, M. B., & Amo-Marco, J. B. (1996). Micropropagation of Limonium thiniense Erben (Plumbaginaceae) using herbarium material. Botanic Gardens Micropropagation News (United Kingdom), 2(2), 18-21.
  • Nongdam, P. (2016). Development of synthetic seed technology in plants and its applications: a review. International Journal of Current Science Research and Review, 19(4), 86-101.
  • Nugrahani, P., Moeljani, I. R., & Lydiana, I. (2018). Encapsulation and germination of synthetic seeds of Chrysanthemum. Proceedings of the International Conference on Science and Technology (ICST 2018), Atlantis Press. 126-129.
  • Onishi, N., Sakamoto, Y., & Hirosawa, T. (1994). Synthetic seeds as an application of mass production of somatic embryos. Plant Cell, Tissue and Organ Culture, 39(2), 137-145.
  • Ozden-Tokatli, Y., De Carlo, A., Gumusel, F., Pignattelli, S., & Lambardi, M. (2008). Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental plants. Propagation of Ornamental Plants, 8(1), 17-22.
  • Parrot, W. A., Merkle, S. A., & Williams E. G. (1993). Somatic embryogenesis: potential for usein propagation and gene transfer systems. In: Murray D. R. (ed) Advanced Methods in Plant Breeding and Biotechnology (pp. 158-200). International Press, UK.
  • Parrott, W. A., & Bailey, M. A. (1993). Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant cell, Tissue and Organ Culture, 32(1), 69-76.
  • Patel, A. V., Pusch, I., Mix-Wagner, G., & Vorlop, K. D. (2000). A novel encapsulation technique for the production of artificial seeds. Plant Cell Reports, 19(9), 868-874.
  • Porter, J. E. (2008). Analysis of tomato synthetic seeds for the development of an optimized encapsulation system, Master Thesis, (pp. 1-45). West Virginia University.
  • Reddy, M. C., Murthy, K. S. R., & Pullaiah, T. (2012). Synthetic seeds: A review in agriculture and forestry. African Journal of Biotechnology, 11(78), 14254-14275.
  • Saiprasad, G. V. S., & Polisetty, R. (2003). Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cellular & Developmental Biology-Plant, 39(1), 42-48.
  • Sakamoto, Y., Mashiko, T., Suzuki, A., Kawata, H., & Iwasaki, A. (1992). Development of encapsulation technology for synthetic seeds. International Symposium on Transplant Production Systems, 319, 71-76.
  • Standardi, A., & Piccioni, E. (1998). Recent perspectives on synthetic seed technology using nonembryogenic in vitro-derived explants. International Journal of Plant Sciences, 159(6), 968-978.
  • Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J., & Thomashow, M. F. (2004). Freezing‐sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing‐tolerant Arabidopsis. The Plant Journal, 39(6), 905-919.

The effect of alginate ratios on storage time in the production of synthetic seeds in tomato (Lycopsersicum esculentum L.)

Year 2022, , 30 - 35, 30.04.2022
https://doi.org/10.51753/flsrt.1041120

Abstract

Plant breeding covers a period of time selection and crossing among plant genotypes for higher yield and resistant to diseases. Breeder seed named “Elit” is a recent product of breeding process. The faster production of elit seed is so important for marketing of seeds. Synthetic seed technology enables an opportunity for developing elit seeds, easily and faster. In this study, it was aimed to determine the storage time of the seeds by determining the germination power of the capsule seed obtained by using hypocotyl explants of tomato plant by MS culture media. Synthetic seeds obtained from explants of tomato plant were stored at +4 °C after coating and then the effects of storage times on regeneration were evaluated by looking at their regeneration after 0, 30, 60 and 90 days. While the germination vigor was 80 % in first day, it decreased to 10 % in 30 days and germination time increased from 20 days to 50 days. As a result, hypocotyls can be used as an explant source in the production of synthetic seeds “Synseed” in tomato plants.

Project Number

TBY-2015-02

References

  • Babaoglu, M., Gurel, E., & Ozcan, S. (2001). Bitki biyoteknolojisi doku kulturu ve uygulamaları. (pp. 1-374). Selçuk Üniversitesi Yayınları.
  • Bektas, E., Sokmen, A., & Cuce, M. (2011). Salep bitkisinin tohumlarından sentetik tohum üretimi. I. Salep Orkide Çalıştayı, 117-120.
  • Danial, G. H., & Ibrahim, D. A. (2018) New protocol of Tomato (Lycopersicon esculentum Mill.) in vitro propagation, Kurdistan, Iraq. Innovaciencia, 6(1), 1-13.
  • Das, A., Mahanta, M., Pramanik, B., & Gantait, S. (2021). Artificial seed development of selected anti-diabetic plants, their storage and regeneration: progress and prospect. In: Gantait S., Verma S. K., Sharangi A. B. (eds) Biotechnology of Anti-diabetic Medicinal Plants (pp. 409-436). Springer, Singapore.
  • Erdem, M., & Uysal, H. (2021). Sentetik tohum. Frontiers in Life Sciences and Related Technologies, 2(2), 68-74.
  • Gantait, S., & Mitra, M. (2019). Applications of synthetic seed technology for propagation, storage, and conservation of orchid germplasms. In: Faisal M., Alatar A. (eds) Synthetic Seeds (pp. 301-321). Springer, Cham.
  • Gardi, T., Piccioni, E., & Standardi, A. (1999). Effect of bead nutrient composition on regrowth of stored vitro-derived encapsulated microcuttings of different woody species. Journal of Microencapsulation, 16(1), 13-25.
  • Huda, A. K. M. N., Rahrnau, M., & Bari, M. A. (2007). Effect of carbon source in alginate bead on synthetic seed germination in eggplant (Solanum melongena L.). Journal of Plant Sciences, 2, 538-544.
  • Lledó, M. D., Crespo, M. B., & Amo-Marco, J. B. (1996). Micropropagation of Limonium thiniense Erben (Plumbaginaceae) using herbarium material. Botanic Gardens Micropropagation News (United Kingdom), 2(2), 18-21.
  • Nongdam, P. (2016). Development of synthetic seed technology in plants and its applications: a review. International Journal of Current Science Research and Review, 19(4), 86-101.
  • Nugrahani, P., Moeljani, I. R., & Lydiana, I. (2018). Encapsulation and germination of synthetic seeds of Chrysanthemum. Proceedings of the International Conference on Science and Technology (ICST 2018), Atlantis Press. 126-129.
  • Onishi, N., Sakamoto, Y., & Hirosawa, T. (1994). Synthetic seeds as an application of mass production of somatic embryos. Plant Cell, Tissue and Organ Culture, 39(2), 137-145.
  • Ozden-Tokatli, Y., De Carlo, A., Gumusel, F., Pignattelli, S., & Lambardi, M. (2008). Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental plants. Propagation of Ornamental Plants, 8(1), 17-22.
  • Parrot, W. A., Merkle, S. A., & Williams E. G. (1993). Somatic embryogenesis: potential for usein propagation and gene transfer systems. In: Murray D. R. (ed) Advanced Methods in Plant Breeding and Biotechnology (pp. 158-200). International Press, UK.
  • Parrott, W. A., & Bailey, M. A. (1993). Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant cell, Tissue and Organ Culture, 32(1), 69-76.
  • Patel, A. V., Pusch, I., Mix-Wagner, G., & Vorlop, K. D. (2000). A novel encapsulation technique for the production of artificial seeds. Plant Cell Reports, 19(9), 868-874.
  • Porter, J. E. (2008). Analysis of tomato synthetic seeds for the development of an optimized encapsulation system, Master Thesis, (pp. 1-45). West Virginia University.
  • Reddy, M. C., Murthy, K. S. R., & Pullaiah, T. (2012). Synthetic seeds: A review in agriculture and forestry. African Journal of Biotechnology, 11(78), 14254-14275.
  • Saiprasad, G. V. S., & Polisetty, R. (2003). Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cellular & Developmental Biology-Plant, 39(1), 42-48.
  • Sakamoto, Y., Mashiko, T., Suzuki, A., Kawata, H., & Iwasaki, A. (1992). Development of encapsulation technology for synthetic seeds. International Symposium on Transplant Production Systems, 319, 71-76.
  • Standardi, A., & Piccioni, E. (1998). Recent perspectives on synthetic seed technology using nonembryogenic in vitro-derived explants. International Journal of Plant Sciences, 159(6), 968-978.
  • Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J., & Thomashow, M. F. (2004). Freezing‐sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing‐tolerant Arabidopsis. The Plant Journal, 39(6), 905-919.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Conservation and Biodiversity, Tissue Engineering
Journal Section Research Articles
Authors

Zafer Secgin 0000-0002-1952-1784

Ahmet Okumuş 0000-0001-5268-801X

Project Number TBY-2015-02
Publication Date April 30, 2022
Submission Date December 23, 2021
Published in Issue Year 2022

Cite

APA Secgin, Z., & Okumuş, A. (2022). Domates (Lycopsersicum esculentum L.)’te sentetik tohum üretiminde aljinat oranlarının depolama zamanına etkisi. Frontiers in Life Sciences and Related Technologies, 3(1), 30-35. https://doi.org/10.51753/flsrt.1041120

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.