Research Article
BibTex RIS Cite
Year 2023, , 79 - 84, 30.08.2023
https://doi.org/10.51753/flsrt.1249167

Abstract

Supporting Institution

Marmara Üniversitesi

Project Number

FYL-2022-10334

Thanks

Katkılarından dolayı Marmara Üniversitesi ve Alabama State Üniversitesine teşekkür ederim. Değerli fikirlerinden dolayı Prof. Dr. Yıldırhan Önere teşekkür ederim.

References

  • Amaveda, H., Mora, M., Dura, O. J., Torres, M. A., Madre, M. A., Marinel, S., & Sotelo, A. (2022). Influence of ceramic particles additions on the properties of Ca3Co4O9. SN Applied Sciences, 4(4), 159.
  • Boyraz, C., Aksu, P., Guler, A., Arda, L. (2022). The effect of defects formed under pressure on CuCrO2 delafossite. SN Applied Sciences, 4(7), 193.
  • Boyraz, C., Aksu, P., Guler, A., Oner, Y., & Fujioka, M. (2023). Short-range magnetic order at low temperatures, exchange bias, and negative magnetization in undoped CuCrO2. Journal of Electronic Materials, 1-9.
  • Boyraz, C., Guler, A., Karatas, O., Aksu, P., Alphan, M. C., & Arda, L. (2022). The investigation of effect of defects on the structural, optical, and magnetic properties of CuAlO2. Acta Physica Polonica A, 142(4), 464-472.
  • Chen, H., & Fraser Stoddart, J. (2021). From molecular to supramolecular electronics. Nature Reviews Materials, 6, 804-828.
  • Chien, C. W., Chung, L. Y., Subramanian, S., Chia, Y., Chen, T., & Yung, S. F. (2022). Preparation and characterization of CuCrO2-CeO2 nanofibers by electrospinning method. Journal of Materials Science: Materials in Electronics, 33, 1091-1100.
  • Dos Santos, A. M., Thomazini, D., & Gelfuso, M. V. (2020). Cold sintering and thermoelectric properties of Ca3Co4O9 ceramics. Ceramics International, 46(9), 14064-14070.
  • Heussman, D., Kittell, J., von Hippel, P. H., & Marcus, A. H. (2022). Temperature-dependent local conformations and conformational distributions of cyanine dimer labeled single-stranded–double-stranded DNA junctions by 2D fluorescence spectroscopy. The Journal of Chemical Physics, 156(4).
  • Hinterding, R., Rieks, D., & Feldhoff, A. (2022). Reaction sintering of Ca3Co4O9 with BiCuSeO nanosheets for high-temperature thermoelectric composites. Journal of Electronic Materials, 51(2), 532-542.
  • Hira, U., Grivel, J. C., Christensen, D. V., Pryds, N., & Sher, F. (2019). Electrical, magnetic and magnetotransport properties of Na and Mo doped Ca3Co4O9 materials. Royal Society of Chemistry Advances, 9, 31274.
  • Hu, X., Phillips, P. J., Mazumdar, D., Carlos, J., Kolesnik, I. S., Gupta, A., Ogut, S., & Klie, R. F. (2016). Atomic and electronic structure of Ti substitution in Ca3Co4O9. Journal of Applied Physics, 120, 205105.
  • Klich, W., & Ohtaki, M. (2021). Thermoelectric properties of Mo-doped bulk In2O3 and prediction of its maximum ZT. Ceramics International, 47(13), 18116-18121.
  • Klie, R. F., Qiao, Q., Paulauskas, T., Gulec, A., Rebola, A., Ogut, S., Prange, M. P., Boyraz, C., Ozdemir, M., Mazumdar, D., & Gupta, A. (2012). Observations of Co4+ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca3Co4O9. Physical Review Letters, 108(19), 196601.
  • Koshibae, W., Tsutsui, K., & Maekawa, S. (2000). Thermopower in cobalt oxides. Physical Review B, 62, 6869.
  • Kun, W., Edgar, M., & Pramod, R. (2019). Thermal and thermoelectric properties of molecular junctions. Advanced Functional Materials, 30, 1904534.
  • Li, Y. N., Wu, P., & Wang, L. (2022). Enhanced thermoelectric properties of Ca3Co4O9 by adding nano MoSi2. Ceramics International, 48(22), 33967-33975.
  • Li, Y., Buerkle, M., & Li, G. (2019). Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nature Materials, 18, 357-363.
  • Liu, S., Qin, B. C., Wang, D. Y., & Zhao, L. D. (2022). Investigations on the thermoelectric transport properties in the hole-doped La2CuO4. Zeitschrift für Anorganische und Allgemeine Chemie, 648(15).
  • Mogheiseh, M., Etemadi, E., & Hasanzadeh Ghasemi, R. (2023). Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures. Journal of Biomolecular Structure and Dynamics, 1-10.
  • Ohtaki, M., Ogura, D., Eguchi, K., & Arai, H. (1996). High temperature thermoelectric properties (Zn1-xAlx)O. Journal of Applied Physics, 79, 1816-1818.
  • Ozkendir, O. M., Miyazaki, H., & Gunaydin, S. (2022). Traces of thermoelectric properties on XAFS spectra. Journal of Electronic Materials, 51(4), 1740-1751.
  • Perac, S., Savic, S. M., Brankovic, Z., Bernik, S., Radojkovic, A., Kojic, S., Vasiljevic, D., & Brankovic, G. (2022). Microstructural, thermoelectric and mechanical properties of Cu substituted NaCo2O4. Materials, 15(3), 4470.
  • Ruan, C. C., Song, H. Z., & Liu, S. H. (2021). Enhancement of Ca3Co4O9+delta thermoelectric properties by dispersing SiC nanoparticles. Ceramics International, 47(5), 6548-6553.
  • Sari, Y. W., Tsalsabila, A., Saputra, A., Nuzulia, N. A., & Herbani, Y. (2023). Hydroxyapatite nucleation and growth modulated by amino acid-capped gold nanoparticles: An in vitro study. Ceramics International, 49(11), 17166-17173.
  • Seif, A., & Yonatan, D. (2021). Spinterface origin for the chirality-induced spin-selectivity effect. Journal of the American Chemical Society, 143(35), 14235-14241.
  • Shi, Z. M., Cao, S. Y., Araujo, J. M., Zhang, P., Lou, Z. H., Qin, M. J., Xu, J., & Gao, F. (2021). Plate-like Ca3Co4O9: A novel lead-free piezoelectric material. Applied Surface Science, 536, 1-5.
  • Tongfang, Y., Dawei, L., Yun, O., Feiyue, M., Shuhong, X., Li, J. F., & Jiangyu, L. J. (2010). Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel based electrospinning and spark plasma sintering. The Journal of Physical Chemistry C, 114, 10061-10065.
  • Woermann, E., & Muan, A. (1970). Phase equilibria in the system CaO-Cobalt oxide in air. Journal of Inorganic and Nuclear Chemistry, 32, 1455-1459.
  • Yang, G., Ramasse, Q., & Klie, R. F. (2009). Direct measurement of Co-ion spin-state transitions in Ca3Co4O9 using variable-temperature electron energy-loss spectroscopy. Applied Physics Letters, 94, 093112.
  • Yueqi, L., Limin, X., Julio, L., Palma, Y. A., & Nongjian, T. (2016). Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nature Communications, 7, 11294.
  • Zhang, L., Liu, Y. C., & Li, S. (2020). Thermoelectric performance enhancement by manipulation of Sr/Ti doping in two sublayers of Ca3Co4O9. Journal of Advanced Ceramics, 9(6), 769-781.

Structural, thermoelectric, and magnetic properties of pure and Ti-doped Ca3Co4O9 ceramic compounds

Year 2023, , 79 - 84, 30.08.2023
https://doi.org/10.51753/flsrt.1249167

Abstract

The effect of the Ti element on the incommensurately layered thermoelectric oxide material Ca3Co4O9 is investigated. This study compares the structural, morphological, thermoelectric, and magnetic properties of Ca3(Co3.7Ti0.3)O9 composition to the pristine Ca3Co4O9. No significant enhancement of the Seebeck coefficient compared to Ca3Co4O9 is observed in the Ti-doped sample. The magnetic properties of the pristine and Ti-doped Ca3Co4O9 are detailed, and the possible correlations between pristine and Ti-doped Ca3Co4O9 are established. In M-H measurements, the effect of Ti in low temperatures revealed a magnetic phase transition due to two sublattices exhibiting wavy behavior. For each sample, magnetic inhomogeneity in the long-range ferromagnetic ordering, which is clear almost before 19 K, is observed through FC and ZFC curves. The findings on the physical properties of both samples are discussed, considering the previously published results.

Project Number

FYL-2022-10334

References

  • Amaveda, H., Mora, M., Dura, O. J., Torres, M. A., Madre, M. A., Marinel, S., & Sotelo, A. (2022). Influence of ceramic particles additions on the properties of Ca3Co4O9. SN Applied Sciences, 4(4), 159.
  • Boyraz, C., Aksu, P., Guler, A., Arda, L. (2022). The effect of defects formed under pressure on CuCrO2 delafossite. SN Applied Sciences, 4(7), 193.
  • Boyraz, C., Aksu, P., Guler, A., Oner, Y., & Fujioka, M. (2023). Short-range magnetic order at low temperatures, exchange bias, and negative magnetization in undoped CuCrO2. Journal of Electronic Materials, 1-9.
  • Boyraz, C., Guler, A., Karatas, O., Aksu, P., Alphan, M. C., & Arda, L. (2022). The investigation of effect of defects on the structural, optical, and magnetic properties of CuAlO2. Acta Physica Polonica A, 142(4), 464-472.
  • Chen, H., & Fraser Stoddart, J. (2021). From molecular to supramolecular electronics. Nature Reviews Materials, 6, 804-828.
  • Chien, C. W., Chung, L. Y., Subramanian, S., Chia, Y., Chen, T., & Yung, S. F. (2022). Preparation and characterization of CuCrO2-CeO2 nanofibers by electrospinning method. Journal of Materials Science: Materials in Electronics, 33, 1091-1100.
  • Dos Santos, A. M., Thomazini, D., & Gelfuso, M. V. (2020). Cold sintering and thermoelectric properties of Ca3Co4O9 ceramics. Ceramics International, 46(9), 14064-14070.
  • Heussman, D., Kittell, J., von Hippel, P. H., & Marcus, A. H. (2022). Temperature-dependent local conformations and conformational distributions of cyanine dimer labeled single-stranded–double-stranded DNA junctions by 2D fluorescence spectroscopy. The Journal of Chemical Physics, 156(4).
  • Hinterding, R., Rieks, D., & Feldhoff, A. (2022). Reaction sintering of Ca3Co4O9 with BiCuSeO nanosheets for high-temperature thermoelectric composites. Journal of Electronic Materials, 51(2), 532-542.
  • Hira, U., Grivel, J. C., Christensen, D. V., Pryds, N., & Sher, F. (2019). Electrical, magnetic and magnetotransport properties of Na and Mo doped Ca3Co4O9 materials. Royal Society of Chemistry Advances, 9, 31274.
  • Hu, X., Phillips, P. J., Mazumdar, D., Carlos, J., Kolesnik, I. S., Gupta, A., Ogut, S., & Klie, R. F. (2016). Atomic and electronic structure of Ti substitution in Ca3Co4O9. Journal of Applied Physics, 120, 205105.
  • Klich, W., & Ohtaki, M. (2021). Thermoelectric properties of Mo-doped bulk In2O3 and prediction of its maximum ZT. Ceramics International, 47(13), 18116-18121.
  • Klie, R. F., Qiao, Q., Paulauskas, T., Gulec, A., Rebola, A., Ogut, S., Prange, M. P., Boyraz, C., Ozdemir, M., Mazumdar, D., & Gupta, A. (2012). Observations of Co4+ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca3Co4O9. Physical Review Letters, 108(19), 196601.
  • Koshibae, W., Tsutsui, K., & Maekawa, S. (2000). Thermopower in cobalt oxides. Physical Review B, 62, 6869.
  • Kun, W., Edgar, M., & Pramod, R. (2019). Thermal and thermoelectric properties of molecular junctions. Advanced Functional Materials, 30, 1904534.
  • Li, Y. N., Wu, P., & Wang, L. (2022). Enhanced thermoelectric properties of Ca3Co4O9 by adding nano MoSi2. Ceramics International, 48(22), 33967-33975.
  • Li, Y., Buerkle, M., & Li, G. (2019). Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nature Materials, 18, 357-363.
  • Liu, S., Qin, B. C., Wang, D. Y., & Zhao, L. D. (2022). Investigations on the thermoelectric transport properties in the hole-doped La2CuO4. Zeitschrift für Anorganische und Allgemeine Chemie, 648(15).
  • Mogheiseh, M., Etemadi, E., & Hasanzadeh Ghasemi, R. (2023). Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures. Journal of Biomolecular Structure and Dynamics, 1-10.
  • Ohtaki, M., Ogura, D., Eguchi, K., & Arai, H. (1996). High temperature thermoelectric properties (Zn1-xAlx)O. Journal of Applied Physics, 79, 1816-1818.
  • Ozkendir, O. M., Miyazaki, H., & Gunaydin, S. (2022). Traces of thermoelectric properties on XAFS spectra. Journal of Electronic Materials, 51(4), 1740-1751.
  • Perac, S., Savic, S. M., Brankovic, Z., Bernik, S., Radojkovic, A., Kojic, S., Vasiljevic, D., & Brankovic, G. (2022). Microstructural, thermoelectric and mechanical properties of Cu substituted NaCo2O4. Materials, 15(3), 4470.
  • Ruan, C. C., Song, H. Z., & Liu, S. H. (2021). Enhancement of Ca3Co4O9+delta thermoelectric properties by dispersing SiC nanoparticles. Ceramics International, 47(5), 6548-6553.
  • Sari, Y. W., Tsalsabila, A., Saputra, A., Nuzulia, N. A., & Herbani, Y. (2023). Hydroxyapatite nucleation and growth modulated by amino acid-capped gold nanoparticles: An in vitro study. Ceramics International, 49(11), 17166-17173.
  • Seif, A., & Yonatan, D. (2021). Spinterface origin for the chirality-induced spin-selectivity effect. Journal of the American Chemical Society, 143(35), 14235-14241.
  • Shi, Z. M., Cao, S. Y., Araujo, J. M., Zhang, P., Lou, Z. H., Qin, M. J., Xu, J., & Gao, F. (2021). Plate-like Ca3Co4O9: A novel lead-free piezoelectric material. Applied Surface Science, 536, 1-5.
  • Tongfang, Y., Dawei, L., Yun, O., Feiyue, M., Shuhong, X., Li, J. F., & Jiangyu, L. J. (2010). Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel based electrospinning and spark plasma sintering. The Journal of Physical Chemistry C, 114, 10061-10065.
  • Woermann, E., & Muan, A. (1970). Phase equilibria in the system CaO-Cobalt oxide in air. Journal of Inorganic and Nuclear Chemistry, 32, 1455-1459.
  • Yang, G., Ramasse, Q., & Klie, R. F. (2009). Direct measurement of Co-ion spin-state transitions in Ca3Co4O9 using variable-temperature electron energy-loss spectroscopy. Applied Physics Letters, 94, 093112.
  • Yueqi, L., Limin, X., Julio, L., Palma, Y. A., & Nongjian, T. (2016). Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nature Communications, 7, 11294.
  • Zhang, L., Liu, Y. C., & Li, S. (2020). Thermoelectric performance enhancement by manipulation of Sr/Ti doping in two sublayers of Ca3Co4O9. Journal of Advanced Ceramics, 9(6), 769-781.
There are 31 citations in total.

Details

Primary Language English
Subjects Nanomaterials
Journal Section Research Articles
Authors

Cihat Boyraz 0000-0002-3508-7703

Project Number FYL-2022-10334
Publication Date August 30, 2023
Submission Date February 8, 2023
Published in Issue Year 2023

Cite

APA Boyraz, C. (2023). Structural, thermoelectric, and magnetic properties of pure and Ti-doped Ca3Co4O9 ceramic compounds. Frontiers in Life Sciences and Related Technologies, 4(2), 79-84. https://doi.org/10.51753/flsrt.1249167

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.