Review
BibTex RIS Cite

Important extremophilic model microorganisms in astrobiology

Year 2023, , 105 - 110, 30.08.2023
https://doi.org/10.51753/flsrt.1299840

Abstract

Humankind has been curious about the sky and beyond since its existence. Since the most primitive times, researchers have been trying to find answers to this curiosity. In recent years, a relatively new discipline, astrobiology, has emerged to answers to frequently asked questions. Astrobiology is an interdisciplinary field that tries to explain beyond the sky, and extraterrestrial life, where life origin came from, evolution, and the big bang. Extremophiles draw attention as the only creatures that will enlighten us in understanding extraterrestrial conditions and the mechanisms of creatures living in these conditions. This review examines the recent discoveries and the principal advances concerning both bacteria (Chroococcidiopsis sp., Colwellia psychrerythraea, Planococcus halocryophilus) and archaea (Halorubrum lacusprofundi and Halobacterium salinarum NRC-1) species which have potentials to examine in astrobiology as model organisms. Obtaining findings from different studies open new perspectives and strategies for several unresolved questions in astrobiology.

References

  • Anderson, I. J., DasSarma, P., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T. G., ... & Kyrpides, N. C. (2016). Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Standards in Genomic Sciences, 11(1), 1-6.
  • Atalah, J., Cáceres-Moreno, P., Espina, G., & Blamey, J. M. (2019). Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technology, 280, 478-488.
  • Baldanta, S., Arnal, R., Blanco-Rivero, A., Guevara, G., & Llorens, J. M. N. (2023). First characterization of cultivable extremophile Chroococcidiopsis isolates from a solar panel. Frontiers in Microbiology, 14.
  • Baqué, M., de Vera, J. P., Rettberg, P., & Billi, D. (2013). The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronautica, 91, 180-186.
  • Beer, K. D., Wurtmann, E. J., Pinel, N., & Baliga, N. S. (2014). Model organisms retain an “ecological memory” of complex ecologically relevant environmental variation. Applied and Environmental Microbiology, 80(6), 1821-1831.
  • Béja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., & DeLong, E. F. (2001). Proteorhodopsin phototrophy in the ocean. Nature, 411(6839), 786-789.
  • Billi, D. (2009). Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles, 13, 49-57.
  • Billi, D., Baqué, M., Smith, H., & McKay, C. (2013). Cyanobacteria from extreme deserts to space. Advances in Microbiology, 3(6), 80-86.
  • Billi, D., & Potts, M. (2002). Life and death of dried prokaryotes. Research in microbiology, 153(1), 7-12.
  • Billi, D., Staibano, C., Verseux, C., Fagliarone, C., Mosca, C., Baqué, M., ... & Rettberg, P. (2019). Dried biofilms of desert strains of Chroococcidiopsis survived prolonged exposure to space and Mars-like conditions in low Earth orbit. Astrobiology, 19(8), 1008-1017.
  • Billi, D. (2020). Challenging the survival thresholds of a desert Cyanobacterium under laboratory simulated and space conditions. Extremophiles as Astrobiological Models, 183-195.
  • Bishop, J. L., Schelble, R. T., McKay, C. P., Brown, A. J., & Perry, K. A. (2011). Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. International Journal of Astrobiology, 10(4), 349-358.
  • Blumberg, B. S. (2003). The NASA Astrobiology Institute: early history and organization. Astrobiology, 3(3), 463-470.
  • Bothe, H. (2019). The Cyanobacterium Chroococcidiopsis and its potential for life on mars. Journal of Astrobiology and Space Science Reviews, 2, 398-412.
  • Brack, A., Clancy, P., Fitton, B., Hofmann, B., Horneck, G., Kurat, G., ... & Westall, F. (1999). An integrated exobiology package for the search for life on Mars. Advances in Space Research, 23(2), 301-308.
  • Carr, M. H., Belton, M. J., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., ... & Veverka, J. (1998). Evidence for a subsurface ocean on Europa. Nature, 391(6665), 363-365.
  • Casillo, A., D’Angelo, C., Parrilli, E., Tutino, M. L., & Corsaro, M. M. (2022). Membrane and extracellular matrix glycopolymers of Colwellia psychrerythraea 34H: Structural changes at different growth temperatures. Frontiers in Microbiology, 13, 120.
  • Cockell, C. S., Brown, S., Landenmark, H., Samuels, T., Siddall, R., & Wadsworth, J. (2017). Liquid water restricts habitability in extreme deserts. Astrobiology, 17(4), 309-318.
  • Cockell, C. S., Schuerger, A. C., Billi, D., Friedmann, E. I., & Panitz, C. (2005). Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology, 5(2), 127-140.
  • Czajka, J. J., Abernathy, M. H., Benites, V. T., Baidoo, E. E., Deming, J. W., & Tang, Y. J. (2018). Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proceedings of the National Academy of Sciences, 115(49), 12507-12512.
  • DasSarma, P., Capes, M. D., & DasSarma, S. (2019). Comparative genomics of Halobacterium strains from diverse locations. In: Das S., Dash H. R. (eds) Microbial Diversity in the Genomic Era (pp. 285-322). Academic Press.
  • DasSarma, P., & DasSarma, S. (2018). Survival of microbes in Earth’s stratosphere. Current Opinion in Microbiology, 43, 24-30.
  • DasSarma, P., Zamora, R. C., Müller, J. A., & DasSarma, S. (2012). Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. Journal of Bacteriology, 194(20), 5530-5537.
  • DasSarma, S. (2006). Extreme halophiles are models for astrobiology. Microbe-American Society for Microbiology, 1(3), 120.
  • DasSarma, S., Capes, M. D., Karan, R., & DasSarma, P. (2013). Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One, 8(3), e58587.
  • DasSarma, S., & DasSarma, P. (2017). Halophiles. eLS, 1-13.
  • DasSarma, S., DasSarma, P., Laye, V. J., & Schwieterman, E. W. (2020). Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles, 24, 31-41.
  • Del Arco, J., Sánchez-Murcia, P. A., Mancheño, J. M., Gago, F., & Fernández-Lucas, J. (2018). Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′-deoxyribosyltransferase from Chroococcidiopsis thermalis. Applied Microbiology and Biotechnology, 102, 6947-6957.
  • Fagliarone, C., Mosca, C., Ubaldi, I., Verseux, C., Baqué, M., Wilmotte, A., & Billi, D. (2017). Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis. Extremophiles, 21, 981-991.
  • Fendrihan, S., Bérces, A., Lammer, H., Musso, M., Rontó, G., Polacsek, T. K., ... & Stan-Lotter, H. (2009). Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology, 9(1), 104-112.
  • Fernandez, B. G., Rothschild, L. J., Fagliarone, C., Chiavarini, S., & Billi, D. (2023). Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. Algal Research, 71, 103044.
  • Firth, E., Carpenter, S. D., Sørensen, H. L., Collins, R. E., & Deming, J. W. (2016). Bacterial use of choline to tolerate salinity shifts in sea-ice brines. Elementa: Science of the Anthropocene, 4, 000120.
  • Franzmann, P. D., Stackebrandt, E., Sanderson, K., Volkman, J. K., Cameron, D. E., Stevenson, P. L., ... & Burton, H. R. (1988). Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Systematic and Applied Microbiology, 11(1), 20-27.
  • Hallsworth, J. E., Mancinelli, R. L., Conley, C. A., Dallas, T. D., Rinaldi, T., Davila, A. F., ... & Madigan, M. T. (2021). Astrobiology of life on Earth. Environmental Microbiology, 23(7), 3335-3344.
  • Hand, K. P., Chyba, C. F., Priscu, J. C., Carlson, R. W., & Nealson, K. H. (2009). Astrobiology and the potential for life on Europa. Europa, 589-629.
  • Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M., Ming, D. W., ... & Smith, P. H. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325(5936), 64-67.
  • Heinz, J., Schirmack, J., Airo, A., Kounaves, S. P., & Schulze-Makuch, D. (2018). Enhanced microbial survivability in subzero brines. Astrobiology, 18(9), 1171-1180.
  • Hendrix, A. R., Hurford, T. A., Barge, L. M., Bland, M. T., Bowman, J. S., Brinckerhoff, W., ... & Vance, S. D. (2019). The NASA roadmap to ocean worlds. Astrobiology, 19(1), 1-27.
  • Horneck, G., Walter, N., Westall, F., Grenfell, J. L., Martin, W. F., Gomez, F., ... & Capria, M. T. (2016). AstRoMap European astrobiology roadmap. Astrobiology, 16(3), 201-243.
  • Hupert-Kocurek, K., Wojcieszyńska, D., & Guzik, U. (2014). Activity of a carboxyl-terminal truncated form of catechol 2, 3-dioxygenase from Planococcus sp. S5. The Scientific World Journal, 2014.
  • Huston, A. L. (2003). Bacterial adaptation to the cold: in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from Colwellia psychrerythraea strain 34H. University of Washington.
  • Huston, A. L., Krieger‐Brockett, B. B., & Deming, J. W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology, 2(4), 383-388.
  • Jung, J. H., Joe, M. H., Kim, D. H., Park, H., Choi, J. I., & Lim, S. (2018). Complete genome sequence of Planococcus sp. PAMC21323 isolated from Antarctica and its metabolic potential to detoxify pollutants. Standards in Genomic Sciences, 13, 1-9.
  • Kavitha, M. (2016). Cold active lipases-an update. Frontiers in Life Science, 9(3), 226-238.
  • Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., & Polanskey, C. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395(6704), 777-780.
  • Kirkinci, S. F., Edbeib, M. F., Aksoy, H. M., Marakli, S., & Kaya, Y. (2021). Identification of Dalapon degrading bacterial strain, Psychrobacter sp. TaeBurcu001 isolated from Antarctica. Polar Science, 28, 100656.
  • Kounaves, S. P., Hecht, M. H., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R. C., ... & Young, S. M. M. (2010). Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results. Journal of Geophysical Research: Planets, 115(E1).
  • Lauro, S. E., Pettinelli, E., Caprarelli, G., Guallini, L., Rossi, A. P., Mattei, E., ... & Orosei, R. (2021). Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy, 5(1), 63-70.
  • Laye, V. J., & DasSarma, S. (2018). An Antarctic extreme halophile and its polyextremophilic enzyme: effects of perchlorate salts. Astrobiology, 18(4), 412-418.
  • Lederberg, J. (1960). Exobiology: approaches to life beyond the Earth. Science, 132(3424), 393-400.
  • Li, C., Zhang, X., Ye, T., Li, X., & Wang, G. (2022). Protection and damage repair mechanisms contributed to the survival of Chroococcidiopsis sp. exposed to a mars-like near space environment. Microbiology Spectrum, 10(6), e03440-22.
  • Li, H., Liu, Y. H., Luo, N., Zhang, X. Y., Luan, T. G., Hu, J. M., ... & Lu, J. Q. (2006). Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Research in Microbiology, 157(7), 629-636.
  • Liu, A., Zhang, Y. J., Cheng, P., Peng, Y. J., Blom, J., & Xue, Q. J. (2020). Whole genome analysis calls for a taxonomic rearrangement of the genus Colwellia. Antonie van Leeuwenhoek, 113, 919-931.
  • Lobo, A. H., Thompson, A. F., Vance, S. D., & Tharimena, S. (2021). A pole-to-equator ocean overturning circulation on Enceladus. Nature Geoscience, 14(4), 185-189.
  • Martínez, G., & Renno, N. O. (2013). Water and brines on Mars: current evidence and implications for MSL. Space Science Reviews, 175, 29-51.
  • Mattie, D. R., Strawson, J., & Zhao, J. (2006). Perchlorate toxicity and risk assessment. Perchlorate: Environmental Occurrence, Interactions and Treatment, 169-196.
  • Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., & Giovannelli, D. (2019). Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology, 10, 780.
  • Methé, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X., ... & Fraser, C. M. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences, 102(31), 10913-10918.
  • Morozova, D., Möhlmann, D., & Wagner, D. (2007). Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres, 37, 189-200.
  • Morrison, D. (2001). The NASA astrobiology program. Astrobiology, 1(1), 3-13.
  • Mosca, C., Rothschild, L. J., Napoli, A., Ferré, F., Pietrosanto, M., Fagliarone, C., ... & Billi, D. (2019). Over-expression of UV-damage DNA repair genes and ribonucleic acid persistence contribute to the resilience of dried biofilms of the desert cyanobacetrium Chroococcidiopsis exposed to Mars-like UV flux and long-term desiccation. Frontiers in Microbiology, 10, 2312.
  • Mudge, M. C., Nunn, B. L., Firth, E., Ewert, M., Hales, K., Fondrie, W. E., ... & Junge, K. A. (2021). Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology, 23(7), 3840-3866.
  • Müller, J. A., & DasSarma, S. (2005). Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. Journal of Bacteriology, 187(5), 1659-1667.
  • Mykytczuk, N., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at -15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME Journal, 7(6), 1211-1226.
  • Mykytczuk, N. C. S., Lawrence, J. R., Omelon, C. R., Southam, G., & Whyte, L. G. (2016). Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at− 15 C. Polar Biology, 39, 701-712.
  • Mykytczuk, N. C., Wilhelm, R. C., & Whyte, L. G. (2012). Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_8), 1937-1944.
  • Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., & Schulte, M. D. (2018). The ladder of life detection. Astrobiology, 18(11), 1375-1402.
  • Ng, W. V., Kennedy, S. P., Mahairas, G. G., Berquist, B., Pan, M., Shukla, H. D., ... & DasSarma, S. (2000). Genome sequence of Halobacterium species NRC-1. Proceedings of the National Academy of Sciences, 97(22), 12176-12181.
  • Nunn, B. L., Slattery, K. V., Cameron, K. A., Timmins‐Schiffman, E., & Junge, K. (2015). Proteomics of Colwellia psychrerythraea at subzero temperatures–a life with limited movement, flexible membranes and vital DNA repair. Environmental Microbiology, 17(7), 2319-2335.
  • Oren, A. (2014). Halophilic archaea on Earth and in space: growth and survival under extreme conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2030), 20140194.
  • Parro, V., Blanco, Y., Puente-Sánchez, F., Rivas, L. A., Moreno-Paz, M., Echeverría, A., ... & Cabrol, N. A. (2018). Biomarkers and metabolic patterns in the sediments of evolving glacial lakes as a proxy for planetary lake exploration. Astrobiology, 18(5), 586-606.
  • Pfeiffer, F., Schuster, S. C., Broicher, A., Falb, M., Palm, P., Rodewald, K., ... & Oesterhelt, D. (2008). Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics, 91(4), 335-346.
  • Rabbow, E., Horneck, G., Rettberg, P., Schott, J. U., Panitz, C., L’Afflitto, A., ... & Reitz, G. (2009). EXPOSE, an astrobiological exposure facility on the international space station-from proposal to flight. Origins of Life and Evolution of Biospheres, 39, 581-598.
  • Rabbow, E., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., ... & Willnecker, R. (2017). EXPOSE-R2: the astrobiological ESA mission on board of the International Space Station. Frontiers in Microbiology, 8, 1533.
  • Raymond‐Bouchard, I., Chourey, K., Altshuler, I., Iyer, R., Hettich, R. L., & Whyte, L. G. (2017). Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environmental Microbiology, 19(11), 4460-4479.
  • Sharma, S., Chaturvedi, U., Sharma, K., Vaishnav, A., & Singh, H. B. (2022). An Overview of Survival Strategies of Psychrophiles and Their Applications. Survival Strategies in Cold-adapted Microorganisms, 133-151.
  • Showalter, G. M., & Deming, J. W. (2018). Low‐temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. Environmental Microbiology Reports, 10(1), 92-101.
  • Smith, M., Craig, D., Herrmann, N., Mahoney, E., Krezel, J., McIntyre, N., & Goodliff, K. (2020). The artemis program: An overview of NASA’s activities to return humans to the moon. In 2020 IEEE Aerospace Conference, IEEE. 1-10.
  • Soppa, J. (2006). From genomes to function: haloarchaea as model organisms. Microbiology, 152(3), 585-590.
  • Stan-Lotter, H. (2019). Survival of subsurface microbial communities over geological times and the implications for astrobiology. In: Seckbach J., Rampelotto P. (eds) Model Ecosystems in Extreme Environments (pp. 169-187). Academic Press.
  • Stivaletta, N., Barbieri, R., & Billi, D. (2012). Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Origins of Life and Evolution of Biospheres, 42, 187-200.
  • Sundarasami, A., Sridhar, A., & Mani, K. (2019). Halophilic archaea as beacon for exobiology: Recent advances and future challenges. Advances in Biological Science Research, 197-214.
  • Tarasashvili, M. V., Elbakidze, K., Doborjginidze, N. D., & Gharibashvili, N. D. (2023). Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. Life Sciences in Space Research, 37, 65-77.
  • Thomas, D. J., Eubanks, L. M., Rector, C., Warrington, J., & Todd, P. (2008). Effects of atmospheric pressure on the survival of photosynthetic microorganisms during simulations of ecopoesis. International Journal of Astrobiology, 7(3-4), 243-249.
  • Thombre, R. S., Vaishampayan, P. A., & Gomez, F. (2020). Applications of extremophiles in astrobiology. In: Salwan R., Sharma V. (eds) Physiological and Biotechnological Aspects of Extremophiles (pp. 89-104). Academic Press.
  • Tikhov, G. A. (1953). Astrobiology. Molodaya gvardia (Young Guard) Moscow: Publishing House.
  • Tracy, C. R., Streten‐Joyce, C., Dalton, R., Nussear, K. E., Gibb, K. S., & Christian, K. A. (2010). Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environmental Microbiology, 12(3), 592-607.
  • Tripathi, S., Singh, K., & Chandra, R. (2021). Adaptation of bacterial communities and plant strategies for amelioration and eco-restoration of an organometallic industrial waste polluted site. In: Singh J. S., Singh C., Tiwari S., Singh A. K. (eds) Microbes in Land Use Change Management (pp. 45-90). Elsevier.
  • Trumbo, S. K., Brown, M. E., & Hand, K. P. (2019). Sodium chloride on the surface of Europa. Science Advances, 5(6), eaaw7123.
  • Verseux, C., Baqué, M., Cifariello, R., Fagliarone, C., Raguse, M., Moeller, R., & Billi, D. (2017). Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation. Astrobiology, 17(2), 118-125.
  • Vítek, P., Jehlička, J., Ascaso, C., Mašek, V., Gómez-Silva, B., Olivares, H., & Wierzchos, J. (2014). Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiology Ecology, 90(2), 351-366.
  • Waajen, A. C., Heinz, J., Airo, A., & Schulze-Makuch, D. (2020). Physicochemical salt solution parameters limit the survival of Planococcus halocryophilus in Martian Cryobrines. Frontiers in Microbiology, 11, 1284.
  • Wadsworth, J., & Cockell, C. S. (2017). Perchlorates on Mars enhance the bacteriocidal effects of UV light. Scientific Reports, 7(1), 4662.
  • Wells, L. E., & Deming, J. W. (2006). Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquatic Microbial Ecology, 45(1), 15-29.
  • Wierzchos, J., Ascaso, C., & McKay, C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6(3), 415-422.
Year 2023, , 105 - 110, 30.08.2023
https://doi.org/10.51753/flsrt.1299840

Abstract

References

  • Anderson, I. J., DasSarma, P., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T. G., ... & Kyrpides, N. C. (2016). Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Standards in Genomic Sciences, 11(1), 1-6.
  • Atalah, J., Cáceres-Moreno, P., Espina, G., & Blamey, J. M. (2019). Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technology, 280, 478-488.
  • Baldanta, S., Arnal, R., Blanco-Rivero, A., Guevara, G., & Llorens, J. M. N. (2023). First characterization of cultivable extremophile Chroococcidiopsis isolates from a solar panel. Frontiers in Microbiology, 14.
  • Baqué, M., de Vera, J. P., Rettberg, P., & Billi, D. (2013). The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronautica, 91, 180-186.
  • Beer, K. D., Wurtmann, E. J., Pinel, N., & Baliga, N. S. (2014). Model organisms retain an “ecological memory” of complex ecologically relevant environmental variation. Applied and Environmental Microbiology, 80(6), 1821-1831.
  • Béja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., & DeLong, E. F. (2001). Proteorhodopsin phototrophy in the ocean. Nature, 411(6839), 786-789.
  • Billi, D. (2009). Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles, 13, 49-57.
  • Billi, D., Baqué, M., Smith, H., & McKay, C. (2013). Cyanobacteria from extreme deserts to space. Advances in Microbiology, 3(6), 80-86.
  • Billi, D., & Potts, M. (2002). Life and death of dried prokaryotes. Research in microbiology, 153(1), 7-12.
  • Billi, D., Staibano, C., Verseux, C., Fagliarone, C., Mosca, C., Baqué, M., ... & Rettberg, P. (2019). Dried biofilms of desert strains of Chroococcidiopsis survived prolonged exposure to space and Mars-like conditions in low Earth orbit. Astrobiology, 19(8), 1008-1017.
  • Billi, D. (2020). Challenging the survival thresholds of a desert Cyanobacterium under laboratory simulated and space conditions. Extremophiles as Astrobiological Models, 183-195.
  • Bishop, J. L., Schelble, R. T., McKay, C. P., Brown, A. J., & Perry, K. A. (2011). Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. International Journal of Astrobiology, 10(4), 349-358.
  • Blumberg, B. S. (2003). The NASA Astrobiology Institute: early history and organization. Astrobiology, 3(3), 463-470.
  • Bothe, H. (2019). The Cyanobacterium Chroococcidiopsis and its potential for life on mars. Journal of Astrobiology and Space Science Reviews, 2, 398-412.
  • Brack, A., Clancy, P., Fitton, B., Hofmann, B., Horneck, G., Kurat, G., ... & Westall, F. (1999). An integrated exobiology package for the search for life on Mars. Advances in Space Research, 23(2), 301-308.
  • Carr, M. H., Belton, M. J., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., ... & Veverka, J. (1998). Evidence for a subsurface ocean on Europa. Nature, 391(6665), 363-365.
  • Casillo, A., D’Angelo, C., Parrilli, E., Tutino, M. L., & Corsaro, M. M. (2022). Membrane and extracellular matrix glycopolymers of Colwellia psychrerythraea 34H: Structural changes at different growth temperatures. Frontiers in Microbiology, 13, 120.
  • Cockell, C. S., Brown, S., Landenmark, H., Samuels, T., Siddall, R., & Wadsworth, J. (2017). Liquid water restricts habitability in extreme deserts. Astrobiology, 17(4), 309-318.
  • Cockell, C. S., Schuerger, A. C., Billi, D., Friedmann, E. I., & Panitz, C. (2005). Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology, 5(2), 127-140.
  • Czajka, J. J., Abernathy, M. H., Benites, V. T., Baidoo, E. E., Deming, J. W., & Tang, Y. J. (2018). Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proceedings of the National Academy of Sciences, 115(49), 12507-12512.
  • DasSarma, P., Capes, M. D., & DasSarma, S. (2019). Comparative genomics of Halobacterium strains from diverse locations. In: Das S., Dash H. R. (eds) Microbial Diversity in the Genomic Era (pp. 285-322). Academic Press.
  • DasSarma, P., & DasSarma, S. (2018). Survival of microbes in Earth’s stratosphere. Current Opinion in Microbiology, 43, 24-30.
  • DasSarma, P., Zamora, R. C., Müller, J. A., & DasSarma, S. (2012). Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. Journal of Bacteriology, 194(20), 5530-5537.
  • DasSarma, S. (2006). Extreme halophiles are models for astrobiology. Microbe-American Society for Microbiology, 1(3), 120.
  • DasSarma, S., Capes, M. D., Karan, R., & DasSarma, P. (2013). Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One, 8(3), e58587.
  • DasSarma, S., & DasSarma, P. (2017). Halophiles. eLS, 1-13.
  • DasSarma, S., DasSarma, P., Laye, V. J., & Schwieterman, E. W. (2020). Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles, 24, 31-41.
  • Del Arco, J., Sánchez-Murcia, P. A., Mancheño, J. M., Gago, F., & Fernández-Lucas, J. (2018). Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′-deoxyribosyltransferase from Chroococcidiopsis thermalis. Applied Microbiology and Biotechnology, 102, 6947-6957.
  • Fagliarone, C., Mosca, C., Ubaldi, I., Verseux, C., Baqué, M., Wilmotte, A., & Billi, D. (2017). Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis. Extremophiles, 21, 981-991.
  • Fendrihan, S., Bérces, A., Lammer, H., Musso, M., Rontó, G., Polacsek, T. K., ... & Stan-Lotter, H. (2009). Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology, 9(1), 104-112.
  • Fernandez, B. G., Rothschild, L. J., Fagliarone, C., Chiavarini, S., & Billi, D. (2023). Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. Algal Research, 71, 103044.
  • Firth, E., Carpenter, S. D., Sørensen, H. L., Collins, R. E., & Deming, J. W. (2016). Bacterial use of choline to tolerate salinity shifts in sea-ice brines. Elementa: Science of the Anthropocene, 4, 000120.
  • Franzmann, P. D., Stackebrandt, E., Sanderson, K., Volkman, J. K., Cameron, D. E., Stevenson, P. L., ... & Burton, H. R. (1988). Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Systematic and Applied Microbiology, 11(1), 20-27.
  • Hallsworth, J. E., Mancinelli, R. L., Conley, C. A., Dallas, T. D., Rinaldi, T., Davila, A. F., ... & Madigan, M. T. (2021). Astrobiology of life on Earth. Environmental Microbiology, 23(7), 3335-3344.
  • Hand, K. P., Chyba, C. F., Priscu, J. C., Carlson, R. W., & Nealson, K. H. (2009). Astrobiology and the potential for life on Europa. Europa, 589-629.
  • Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M., Ming, D. W., ... & Smith, P. H. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325(5936), 64-67.
  • Heinz, J., Schirmack, J., Airo, A., Kounaves, S. P., & Schulze-Makuch, D. (2018). Enhanced microbial survivability in subzero brines. Astrobiology, 18(9), 1171-1180.
  • Hendrix, A. R., Hurford, T. A., Barge, L. M., Bland, M. T., Bowman, J. S., Brinckerhoff, W., ... & Vance, S. D. (2019). The NASA roadmap to ocean worlds. Astrobiology, 19(1), 1-27.
  • Horneck, G., Walter, N., Westall, F., Grenfell, J. L., Martin, W. F., Gomez, F., ... & Capria, M. T. (2016). AstRoMap European astrobiology roadmap. Astrobiology, 16(3), 201-243.
  • Hupert-Kocurek, K., Wojcieszyńska, D., & Guzik, U. (2014). Activity of a carboxyl-terminal truncated form of catechol 2, 3-dioxygenase from Planococcus sp. S5. The Scientific World Journal, 2014.
  • Huston, A. L. (2003). Bacterial adaptation to the cold: in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from Colwellia psychrerythraea strain 34H. University of Washington.
  • Huston, A. L., Krieger‐Brockett, B. B., & Deming, J. W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology, 2(4), 383-388.
  • Jung, J. H., Joe, M. H., Kim, D. H., Park, H., Choi, J. I., & Lim, S. (2018). Complete genome sequence of Planococcus sp. PAMC21323 isolated from Antarctica and its metabolic potential to detoxify pollutants. Standards in Genomic Sciences, 13, 1-9.
  • Kavitha, M. (2016). Cold active lipases-an update. Frontiers in Life Science, 9(3), 226-238.
  • Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., & Polanskey, C. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395(6704), 777-780.
  • Kirkinci, S. F., Edbeib, M. F., Aksoy, H. M., Marakli, S., & Kaya, Y. (2021). Identification of Dalapon degrading bacterial strain, Psychrobacter sp. TaeBurcu001 isolated from Antarctica. Polar Science, 28, 100656.
  • Kounaves, S. P., Hecht, M. H., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R. C., ... & Young, S. M. M. (2010). Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results. Journal of Geophysical Research: Planets, 115(E1).
  • Lauro, S. E., Pettinelli, E., Caprarelli, G., Guallini, L., Rossi, A. P., Mattei, E., ... & Orosei, R. (2021). Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy, 5(1), 63-70.
  • Laye, V. J., & DasSarma, S. (2018). An Antarctic extreme halophile and its polyextremophilic enzyme: effects of perchlorate salts. Astrobiology, 18(4), 412-418.
  • Lederberg, J. (1960). Exobiology: approaches to life beyond the Earth. Science, 132(3424), 393-400.
  • Li, C., Zhang, X., Ye, T., Li, X., & Wang, G. (2022). Protection and damage repair mechanisms contributed to the survival of Chroococcidiopsis sp. exposed to a mars-like near space environment. Microbiology Spectrum, 10(6), e03440-22.
  • Li, H., Liu, Y. H., Luo, N., Zhang, X. Y., Luan, T. G., Hu, J. M., ... & Lu, J. Q. (2006). Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Research in Microbiology, 157(7), 629-636.
  • Liu, A., Zhang, Y. J., Cheng, P., Peng, Y. J., Blom, J., & Xue, Q. J. (2020). Whole genome analysis calls for a taxonomic rearrangement of the genus Colwellia. Antonie van Leeuwenhoek, 113, 919-931.
  • Lobo, A. H., Thompson, A. F., Vance, S. D., & Tharimena, S. (2021). A pole-to-equator ocean overturning circulation on Enceladus. Nature Geoscience, 14(4), 185-189.
  • Martínez, G., & Renno, N. O. (2013). Water and brines on Mars: current evidence and implications for MSL. Space Science Reviews, 175, 29-51.
  • Mattie, D. R., Strawson, J., & Zhao, J. (2006). Perchlorate toxicity and risk assessment. Perchlorate: Environmental Occurrence, Interactions and Treatment, 169-196.
  • Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., & Giovannelli, D. (2019). Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology, 10, 780.
  • Methé, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X., ... & Fraser, C. M. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences, 102(31), 10913-10918.
  • Morozova, D., Möhlmann, D., & Wagner, D. (2007). Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres, 37, 189-200.
  • Morrison, D. (2001). The NASA astrobiology program. Astrobiology, 1(1), 3-13.
  • Mosca, C., Rothschild, L. J., Napoli, A., Ferré, F., Pietrosanto, M., Fagliarone, C., ... & Billi, D. (2019). Over-expression of UV-damage DNA repair genes and ribonucleic acid persistence contribute to the resilience of dried biofilms of the desert cyanobacetrium Chroococcidiopsis exposed to Mars-like UV flux and long-term desiccation. Frontiers in Microbiology, 10, 2312.
  • Mudge, M. C., Nunn, B. L., Firth, E., Ewert, M., Hales, K., Fondrie, W. E., ... & Junge, K. A. (2021). Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology, 23(7), 3840-3866.
  • Müller, J. A., & DasSarma, S. (2005). Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. Journal of Bacteriology, 187(5), 1659-1667.
  • Mykytczuk, N., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at -15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME Journal, 7(6), 1211-1226.
  • Mykytczuk, N. C. S., Lawrence, J. R., Omelon, C. R., Southam, G., & Whyte, L. G. (2016). Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at− 15 C. Polar Biology, 39, 701-712.
  • Mykytczuk, N. C., Wilhelm, R. C., & Whyte, L. G. (2012). Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_8), 1937-1944.
  • Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., & Schulte, M. D. (2018). The ladder of life detection. Astrobiology, 18(11), 1375-1402.
  • Ng, W. V., Kennedy, S. P., Mahairas, G. G., Berquist, B., Pan, M., Shukla, H. D., ... & DasSarma, S. (2000). Genome sequence of Halobacterium species NRC-1. Proceedings of the National Academy of Sciences, 97(22), 12176-12181.
  • Nunn, B. L., Slattery, K. V., Cameron, K. A., Timmins‐Schiffman, E., & Junge, K. (2015). Proteomics of Colwellia psychrerythraea at subzero temperatures–a life with limited movement, flexible membranes and vital DNA repair. Environmental Microbiology, 17(7), 2319-2335.
  • Oren, A. (2014). Halophilic archaea on Earth and in space: growth and survival under extreme conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2030), 20140194.
  • Parro, V., Blanco, Y., Puente-Sánchez, F., Rivas, L. A., Moreno-Paz, M., Echeverría, A., ... & Cabrol, N. A. (2018). Biomarkers and metabolic patterns in the sediments of evolving glacial lakes as a proxy for planetary lake exploration. Astrobiology, 18(5), 586-606.
  • Pfeiffer, F., Schuster, S. C., Broicher, A., Falb, M., Palm, P., Rodewald, K., ... & Oesterhelt, D. (2008). Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics, 91(4), 335-346.
  • Rabbow, E., Horneck, G., Rettberg, P., Schott, J. U., Panitz, C., L’Afflitto, A., ... & Reitz, G. (2009). EXPOSE, an astrobiological exposure facility on the international space station-from proposal to flight. Origins of Life and Evolution of Biospheres, 39, 581-598.
  • Rabbow, E., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., ... & Willnecker, R. (2017). EXPOSE-R2: the astrobiological ESA mission on board of the International Space Station. Frontiers in Microbiology, 8, 1533.
  • Raymond‐Bouchard, I., Chourey, K., Altshuler, I., Iyer, R., Hettich, R. L., & Whyte, L. G. (2017). Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environmental Microbiology, 19(11), 4460-4479.
  • Sharma, S., Chaturvedi, U., Sharma, K., Vaishnav, A., & Singh, H. B. (2022). An Overview of Survival Strategies of Psychrophiles and Their Applications. Survival Strategies in Cold-adapted Microorganisms, 133-151.
  • Showalter, G. M., & Deming, J. W. (2018). Low‐temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. Environmental Microbiology Reports, 10(1), 92-101.
  • Smith, M., Craig, D., Herrmann, N., Mahoney, E., Krezel, J., McIntyre, N., & Goodliff, K. (2020). The artemis program: An overview of NASA’s activities to return humans to the moon. In 2020 IEEE Aerospace Conference, IEEE. 1-10.
  • Soppa, J. (2006). From genomes to function: haloarchaea as model organisms. Microbiology, 152(3), 585-590.
  • Stan-Lotter, H. (2019). Survival of subsurface microbial communities over geological times and the implications for astrobiology. In: Seckbach J., Rampelotto P. (eds) Model Ecosystems in Extreme Environments (pp. 169-187). Academic Press.
  • Stivaletta, N., Barbieri, R., & Billi, D. (2012). Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Origins of Life and Evolution of Biospheres, 42, 187-200.
  • Sundarasami, A., Sridhar, A., & Mani, K. (2019). Halophilic archaea as beacon for exobiology: Recent advances and future challenges. Advances in Biological Science Research, 197-214.
  • Tarasashvili, M. V., Elbakidze, K., Doborjginidze, N. D., & Gharibashvili, N. D. (2023). Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. Life Sciences in Space Research, 37, 65-77.
  • Thomas, D. J., Eubanks, L. M., Rector, C., Warrington, J., & Todd, P. (2008). Effects of atmospheric pressure on the survival of photosynthetic microorganisms during simulations of ecopoesis. International Journal of Astrobiology, 7(3-4), 243-249.
  • Thombre, R. S., Vaishampayan, P. A., & Gomez, F. (2020). Applications of extremophiles in astrobiology. In: Salwan R., Sharma V. (eds) Physiological and Biotechnological Aspects of Extremophiles (pp. 89-104). Academic Press.
  • Tikhov, G. A. (1953). Astrobiology. Molodaya gvardia (Young Guard) Moscow: Publishing House.
  • Tracy, C. R., Streten‐Joyce, C., Dalton, R., Nussear, K. E., Gibb, K. S., & Christian, K. A. (2010). Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environmental Microbiology, 12(3), 592-607.
  • Tripathi, S., Singh, K., & Chandra, R. (2021). Adaptation of bacterial communities and plant strategies for amelioration and eco-restoration of an organometallic industrial waste polluted site. In: Singh J. S., Singh C., Tiwari S., Singh A. K. (eds) Microbes in Land Use Change Management (pp. 45-90). Elsevier.
  • Trumbo, S. K., Brown, M. E., & Hand, K. P. (2019). Sodium chloride on the surface of Europa. Science Advances, 5(6), eaaw7123.
  • Verseux, C., Baqué, M., Cifariello, R., Fagliarone, C., Raguse, M., Moeller, R., & Billi, D. (2017). Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation. Astrobiology, 17(2), 118-125.
  • Vítek, P., Jehlička, J., Ascaso, C., Mašek, V., Gómez-Silva, B., Olivares, H., & Wierzchos, J. (2014). Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiology Ecology, 90(2), 351-366.
  • Waajen, A. C., Heinz, J., Airo, A., & Schulze-Makuch, D. (2020). Physicochemical salt solution parameters limit the survival of Planococcus halocryophilus in Martian Cryobrines. Frontiers in Microbiology, 11, 1284.
  • Wadsworth, J., & Cockell, C. S. (2017). Perchlorates on Mars enhance the bacteriocidal effects of UV light. Scientific Reports, 7(1), 4662.
  • Wells, L. E., & Deming, J. W. (2006). Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquatic Microbial Ecology, 45(1), 15-29.
  • Wierzchos, J., Ascaso, C., & McKay, C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6(3), 415-422.
There are 95 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Review
Authors

Simge Emlik 0000-0002-2299-6158

Sevgi Maraklı 0000-0001-5796-7819

Publication Date August 30, 2023
Submission Date May 20, 2023
Published in Issue Year 2023

Cite

APA Emlik, S., & Maraklı, S. (2023). Important extremophilic model microorganisms in astrobiology. Frontiers in Life Sciences and Related Technologies, 4(2), 105-110. https://doi.org/10.51753/flsrt.1299840

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.