Research Article
BibTex RIS Cite

Phytofabrication of silver nanoparticles using callus extracts of natural tetraploid Trifolium pratense L. and its bioactivities

Year 2023, , 18 - 28, 31.12.2023
https://doi.org/10.51753/flsrt.1357092

Abstract

One of the main subjects of plant biotechnology is plant tissue culture and in recent years is considered a possible approach model for green and eco-friendly biosynthesis of nanoparticles. This study aimed to present calli produced from the natural tetraploid Trifolium pratense L. containing high amounts of phenolic compounds and glycosidic bioactive macromolecules and the biosynthesis of silver nanoparticles from calli. Combinatorial optimization of silver nanoparticles was achieved for the first time in this study, thanks to the stabilizing and reducing properties of hypocotyl, apical meristem, and epicotyl derived callus extracts of the natural tetraploid T. pratense L. biosynthesized nanoparticles from three different callus extracts. Callus extracts were used to create different experiments with AgNO3 at various concentrations (0.16, 0.5, 0.84, 1.18, 1.52 and 1.96 mg L-1), different temperatures (40, 50, 60, 70, 80, 90, 100°C), and different pH levels (5, 7, 10) to carry out the biosynthesis of AgNPs. Biologically synthesized AgNPs were easily monitored by color change in ultraviolet and UV-Vis spectroscopy proved to be a fast and simple method. Also, TEM, XRD, and FTIR analyses were done to characterize and confirm the formation of crystalline nanoparticles. It was determined that antibacterial activity inhibition was achieved by using the Agar-well diffusion method for antibacterial activity measurements on Gram-positive Staphylococcus aureus ATCC 25923 and Gram-negative Escherichia coli CECT 4972 bacteria. Biosynthesized AgNPs were observed in the wavelength range of 400-500 nm in the UV-VIS spectrum. TEM analysis demonstrated the size and shape of biosynthesized silver nanoparticles under different conditions. It was observed that the smaller silver nanoparticles were spherical and the larger silver nanoparticles were triangular, elliptical, and spherical shape. The XRD analysis proved the presence of Ag0 in nanoparticles and showed crystal structure for silver nanoparticles. By FTIR analysis, O-H hydroxyl groups of functional groups on the AgNP surface, H-linked OH stretching, C-H stretching, -CH stretching of -CH2 and -CH3 functional groups, C-N and carboxylate, aliphatic phosphate and primary amine stretching were expressed. Biosynthesized silver nanoparticles showed antibacterial activity against Gram-positive S. aureus ATCC 25923 bacteria, AgNP hypocotyl (1.7mm), AgNP-epicotyl (1.1mm) against Gram-negative E. coli CECT 4972 bacteria. Among the hypocotyl, apical meristem, and epicotyl callus cultures, the highest antioxidant activity was observed in the AgNPs obtained from hypocotyl-concentration experiments, with a DPPH radical activity of 52% and an ABTS radical activity of 68%. In conclusion, these findings underscore the potential of biotechnological strategies in green nanotechnology, which can be offered for developing metal nanoparticles with potential biomedicine and biotechnology applications.

References

  • Ahmad, N., Muhammad, J., Khan, K., Ali, W., Fazal, H., Ali, M., ... & Hano, C. (2022). Silver and gold nanoparticles induced differential antimicrobial potential in calli cultures of Prunella vulgaris. BMC chemistry, 16(1), 20.
  • Aktepe, N. (2021). Synthesis, characterization and antimicrobial activities of silver nanomaterials. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • Alfarraj, N. S., Tarroum, M., Al-Qurainy, F., Nadeem, M., Khan, S., Salih, A. M., ... & Perveen, K. (2023). Biosynthesis of Silver Nanoparticles and Exploring Their Potential of Reducing the Contamination of the In Vitro Culture Media and Inducing the Callus Growth of Rumex nervosus Explants. Molecules, 28(9), 3666.
  • Allawadhi, P., Singh, V., Khurana, A., Khurana, I., Allwadhi, S., Kumar, P., ... & Bharani, K. K. (2021). Silver nanoparticle based multifunctional approach for combating COVID-19. Sensors International, 2, 100101.
  • Anjum, S., & Abbasi, B. H. (2016). Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.. International Journal of Nanomedicine, 11, 715-728.
  • Aref, M. S., & Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689.
  • Arsène, M. M. J., Podoprigora, I. V., Davares, A. K. L., Razan, M., Das, M. S., & Senyagin, A. N. (2021). Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Veterinary World, 14(5), 1330-1341.
  • Avcioglu, F., Behçet, M., Karabork, S., & Kurtoglu, M. G. (2019). Yara örneklerinden izole edilen Mikroorganizmaların Antimikrobiyal direnç oranları-üç yıllık değerlendirme. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 9(3), 110-114.
  • Labulo, A. H., Adesuji, E. T., Dedeke, O. A., Bodede, O. S., Oseghale, C. O., Moodley, R., ... & Adegoke, O. A. (2016). A dual-purpose silver nanoparticles biosynthesized using aqueous leaf extract of Detarium microcarpum: an under-utilized species. Talanta, 160, 735-744.
  • Aziz, M. S. A., Shaheen, M. S., Nekeety, A. A., & Wahhab, M. A. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356-363.
  • Baran, M. F., Keskin, C., Baran, A., Hatipoğlu, A., Yildiztekin, M., Küçükaydin, S., ... & Eftekhari, A. (2023). Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules, 28(5), 2310.
  • Baruah, K., Haque, M., Langbang, L., Das, S., Aguan, K., & Roy, A.S. (2021). Ocimum sanctum mediated green synthesis of silver nanoparticles: A biophysical study towards lysozyme binding and anti-bacterial activity. Journal of Molecular Liquids, 337, 116422.
  • Bedlovičová, Z., Strapáč, I., Baláž, M., & Salayová, A. (2020). A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 25(14), 3191.
  • Bernabé-Antonio, A., Martínez-Ceja, A., Romero-Estrada, A., Sánchez-Carranza, J. N., Columba-Palomares, M. C., Rodríguez-López, V., ... & Gutiérrez-Hernández, J. M. (2022). Green synthesis of silver nanoparticles using Randia aculeata L. cell culture extracts, characterization, and evaluation of antibacterial and antiproliferative Activity. Nanomaterials, 12(23), 4184.
  • Botcha, S., & Prattipati, S. D. (2020). Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. BioNanoScience, 10, 11-22.
  • Buyukkartal, H. N., & Colgecen, H. (2007). The reasons of sterility during pollen grain formation in the natural tetraploid Trifolium pratense L. International Journal of Botany, 3(2), 188-195.
  • Chowdhury, M. H., Ray, K., Geddes, C. D., & Lakowicz, J. R. (2008). Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chemical Physics Letters 452, 162-167.
  • Chowdhury, R. A., Dhar, S. A., Das, S., Nahian, K., & Qadir, R. (2021). Green synthesis and characterization of silver nanoparticles from the aqueous extract of the leaves of Citrus aurantifolia. Materials Today: Proceedings, 44, 1039-1042.
  • CLSI, (2020). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Colgecen, H., Calıskan, U., Kartal, M., & Buyukkartal, H. N. (2014). Comprehensive evaluation of phytoestrogen accumulation in plants and in vitro cultures of Medicago sativa L. 'Elçi' and natural tetraploid Trifolium pratense L.. Turkish Journal of Biology, 38, 619-627.
  • Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 16(7), 1831.
  • Das, G., Shin, H., & Patra, J. K. (2020). Comparative assessment of antioxidant, anti-diabetic and cytotoxic effects of three peel/shell food waste extract-mediated silver nanoparticles. International Journal of Nanomedicine, 15, 9075-9088.
  • Devi, M. P. I., Nallamuthu, N., Rajini, N., Rajulub, A. V., Ramc, N. H., & Siengchin, S. (2018). Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. International Journal of Biological Macromolecules, 118, 99-106.
  • Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11, 1-42.
  • Elci, S. (1982). The utilization of genetic resource in fodder crop breeding, Eucarpia. Fodder Crop Section, September, Aberystwyth, UK, 1-347.
  • Ellnain-Wojtaszek, M., Kruczynski, Z., & Kasprzak, J. (2003). Investigation of the free radical scavenging activitiy of Ginkgo biloba L. leaves. Fitoterapia, 74, 1-6.
  • EUCAST, (2014). Antimikrobik duyarlılık testine yönelik disk difüzyon yöntemi Sürüm.
  • Fierascu, I., Bunghez, I. R., Fierascu, R., Ion, R. M., Dinu-Pîrvu, C. E., & Nuţă, D. (2014). Characterization and Antioxidant Activity of Phytosynthesised Silver Nanoparticles Using Calendula officinalis Extract. Farmacia, 62, 1.
  • Firoozi, S., Jamzad, M., & Yari, M. (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of Nanostructure in Chemistry, 6, 357-364.
  • Gharari, Z., Hanachi, P., Sadeghinia, H., Walker, T. R. (2022). Cichorium intybus bio-callus synthesized silver nanoparticles: A promising antioxidant, antibacterial and anticancer compound. International Journal of Pharmaceutics, 625, 122062.
  • Ghorbani, H. R., Safekordi, A. A., Attar, H., & Rezayat Sorkhabadi, S. M. (2011). Biological and non-biological methods for silver nanoparticles synthesis. Chemical and Biochemical Engineering Quarterly, 25(3), 317-326.
  • Gonzalez-Carter, D. A., Leo, B. F., Ruenraroengsak, P., Chen, S., Goode, A. E., Theodorou, I. G., ... & Porter, A. E. (2017). Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific reports, 7(1), 42871.
  • He, B., Tan, J., Liew, K., & Liu, H. (2004). Synthesis of size-controlled ag nanoparticles. Journal of Molecular Catalysis A: Chemical, 221, 121-126.
  • lashin, I., Hasanin, M., & Hassan, S. A. M. (2023). Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conv. Bioref, 13, 10133-10146.
  • Jakovljević, D., Stanković, M., & Warchoł, M. (2022). Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell Tissue Organ Culture, 149, 61-79.
  • Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033.
  • Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533, 195-200.
  • Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823-1838.
  • Khaosaad, T., Krenn, L., Medjakovic, S., Ranner, A., Lossl, A., Nell, M., Jungbauer, A., & Vierheilig, H. (2008). Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. Journal of Plant Physiology, 165, 1161-1167.
  • Kumar, K. S., & Kathireswari, P. (2016). Biological synthesis of silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. International Journal of Current Microbiology and Applied Sciences, 5(3), 926-937.
  • Lashin, I., Fouda, A., Gobouri, A. A., Azab, E., Mohammedsaleh, Z. M., & Makharita, R. R. (2021). Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L.. Biomolecules, 11, 341.
  • Li, W. R., Xie, X. B., & Shi, Q. S. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24, 135-141.
  • Lu, F., Gao, Y., Huang, J., Sun, D., & Li, Q. (2014). Roles of biomolecules in the biosynthesis of silver nanoparticles: case of Gardenia jasminoides extract. Chinese Journal of Chemical Engineering, 22, 706-712.
  • Malik, M., Iqbal, M. A., Malik, M., Raza, M. A., Shahid, W., Choi, J. R., & Pham, P. V. (2022). Biosynthesis and characterizations of silver nanoparticles from Annona squamosa leaf and fruit extracts for size-dependent biomedical applications. Nanomaterials, 12(4), 616.
  • Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A. B., Durán, N., & Rubilar, O. (2019). Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 35, 88.
  • Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G.A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271-278.
  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871-12934.
  • Mude, N., Ingle, A., Gade, A., & Rai, M. (2009). Synthesis of silver nanoparticles using callus extract of Carica papaya-A first report. Journal of Plant Biochemistry and Biotechnology, 18(1), 83-86.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  • Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.. Colloids and Surfaces B: Biointerfaces, 79, 488-493.
  • Netala, V. N., Kotakadi, V. S., Nagam, V., Bobbu, P., Ghosh, S. B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807.
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10, 9642.
  • Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K., & Loake, G. J. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49(3), 149.
  • Ozturk Kup, F., Coskuncay, S., & Duman, F. (2020). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Materials Science and Engineering: C, 107, 110207.
  • Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., ... & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
  • Pandit, R. (2015). Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience, 7 (1), 15-19.
  • Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309.
  • Raja, K., Saravanakumar, A., & Vijayakumar, R. (2012). Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 490-494.
  • Rakesh, B., Srinatha, N., Rudresh Kumar, K. J., Madhu, A., Suresh Kumar, M. R., & Praveen, N. (2022). Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and in vitro leaf-derived callus extracts of Mucuna pruriens (L.) DC.. South African Journal of Botany, 148, 251-258.
  • Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environmental Nanotechnology, Monitoring & Management, 15, 100428.
  • Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R. E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus Extracts). Nanoscale Research Letters, 8, 318.
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9, 2673-2702.
  • Sahayaraj, K., Rajesh, S., & Rathi, J. M. (2012). Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Digest Journal of Nanomaterials and Biostructures, 7(4), 1557-1567.
  • Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 199, 344-370.
  • Sathiya, C. K., & Akilandeswari, S. (2014). Fabrication and characterization of silver nanoparticles using delonix elata leaf Broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 337-341.
  • Sharifi-Rad, M., Pohl, P., Epifano, F., & Álvarez-Suarez, J. M. (2020). Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials, 10, 2383.
  • Sharifi-Rad, M., Pohl, P., & Epifano, F. (2021). Phytofabrication of silver nanoparticles (agnps) with pharmaceutical capabilities using Otostegia persica (Burm.) Boiss. leaf extract. Nanomaterials, 11(4), 1045.
  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 7.
  • Snedecor, G. W., Cochran, W. G. (1967). Statistical methods. Iowa, USA: The Iowa State University Press, 327-329.
  • Solanki, A., Rathod, D., Patel, I. C., & Panigrahi, J. (2021). Impact of silver nanoparticles as antibacterial agent derived from leaf and callus of Celastrus paniculatus Willd. Future Journal of Pharmaceutical Sciences, 7, 60-69.
  • Szydlowska-Czerniak, A., Tulodziecka, A., & Sz1yk, E. (2012). A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst, 137, 3750.
  • Tian, X., Jiang, X., Welch, C., Croley, T. R., Wong, T. Y., Chen, C., & Yin, J. J. (2018). Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Applied Materials & Interfaces, 10, 8443-8450.
  • Vijayaraghavan, K., Kamala Nalini, S. P., Udaya Prakash, N., & Madhankumar, D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Colloids and Surfaces B: Biointerfaces, 94, 114-117.
  • Wang, C. K., & Lee, W. H. (1996). Separation, Characteristics, and Biological Activities of Phenolics in Areca Fruit. Journal of Agriculture and Food Chemistry, 44(8), 1-6.
  • WHO, (2019). World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. Joint News Release, 1-29.
  • Xia, Q. H., Ma, Y. J., & Wang, J. W. (2016). Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials, 6, 160.
  • Yeshchenko, O. A., Dmitruk, I. M., Alexeenko, A. A., Kotko, A. V., Verdal, J., & Pınchuk, A. O. (2013). Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surface Science, 608, 275-281.
  • Yugay, Y. A., Sorokina, M. R., Grigorchuk, V. P., Rusapetova, T. V., Silant’ev, V. E., Egorova, A. E., ... & Shkryl, Y. N. (2023). Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of Aristolochia manshuriensis. Journal of Functional Biomaterials, 14(9), 451.
  • Yurttas, E., Tetik, N., & Ayrilmis, N. (2022). Antimicrobial properties of 3D printed biocomposites with heat-treated wood flour using silver nanoparticles with leaf extract. Wood Material Science and Engineering, 18(2), 663-671.
Year 2023, , 18 - 28, 31.12.2023
https://doi.org/10.51753/flsrt.1357092

Abstract

References

  • Ahmad, N., Muhammad, J., Khan, K., Ali, W., Fazal, H., Ali, M., ... & Hano, C. (2022). Silver and gold nanoparticles induced differential antimicrobial potential in calli cultures of Prunella vulgaris. BMC chemistry, 16(1), 20.
  • Aktepe, N. (2021). Synthesis, characterization and antimicrobial activities of silver nanomaterials. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • Alfarraj, N. S., Tarroum, M., Al-Qurainy, F., Nadeem, M., Khan, S., Salih, A. M., ... & Perveen, K. (2023). Biosynthesis of Silver Nanoparticles and Exploring Their Potential of Reducing the Contamination of the In Vitro Culture Media and Inducing the Callus Growth of Rumex nervosus Explants. Molecules, 28(9), 3666.
  • Allawadhi, P., Singh, V., Khurana, A., Khurana, I., Allwadhi, S., Kumar, P., ... & Bharani, K. K. (2021). Silver nanoparticle based multifunctional approach for combating COVID-19. Sensors International, 2, 100101.
  • Anjum, S., & Abbasi, B. H. (2016). Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.. International Journal of Nanomedicine, 11, 715-728.
  • Aref, M. S., & Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689.
  • Arsène, M. M. J., Podoprigora, I. V., Davares, A. K. L., Razan, M., Das, M. S., & Senyagin, A. N. (2021). Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Veterinary World, 14(5), 1330-1341.
  • Avcioglu, F., Behçet, M., Karabork, S., & Kurtoglu, M. G. (2019). Yara örneklerinden izole edilen Mikroorganizmaların Antimikrobiyal direnç oranları-üç yıllık değerlendirme. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 9(3), 110-114.
  • Labulo, A. H., Adesuji, E. T., Dedeke, O. A., Bodede, O. S., Oseghale, C. O., Moodley, R., ... & Adegoke, O. A. (2016). A dual-purpose silver nanoparticles biosynthesized using aqueous leaf extract of Detarium microcarpum: an under-utilized species. Talanta, 160, 735-744.
  • Aziz, M. S. A., Shaheen, M. S., Nekeety, A. A., & Wahhab, M. A. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356-363.
  • Baran, M. F., Keskin, C., Baran, A., Hatipoğlu, A., Yildiztekin, M., Küçükaydin, S., ... & Eftekhari, A. (2023). Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules, 28(5), 2310.
  • Baruah, K., Haque, M., Langbang, L., Das, S., Aguan, K., & Roy, A.S. (2021). Ocimum sanctum mediated green synthesis of silver nanoparticles: A biophysical study towards lysozyme binding and anti-bacterial activity. Journal of Molecular Liquids, 337, 116422.
  • Bedlovičová, Z., Strapáč, I., Baláž, M., & Salayová, A. (2020). A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 25(14), 3191.
  • Bernabé-Antonio, A., Martínez-Ceja, A., Romero-Estrada, A., Sánchez-Carranza, J. N., Columba-Palomares, M. C., Rodríguez-López, V., ... & Gutiérrez-Hernández, J. M. (2022). Green synthesis of silver nanoparticles using Randia aculeata L. cell culture extracts, characterization, and evaluation of antibacterial and antiproliferative Activity. Nanomaterials, 12(23), 4184.
  • Botcha, S., & Prattipati, S. D. (2020). Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. BioNanoScience, 10, 11-22.
  • Buyukkartal, H. N., & Colgecen, H. (2007). The reasons of sterility during pollen grain formation in the natural tetraploid Trifolium pratense L. International Journal of Botany, 3(2), 188-195.
  • Chowdhury, M. H., Ray, K., Geddes, C. D., & Lakowicz, J. R. (2008). Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chemical Physics Letters 452, 162-167.
  • Chowdhury, R. A., Dhar, S. A., Das, S., Nahian, K., & Qadir, R. (2021). Green synthesis and characterization of silver nanoparticles from the aqueous extract of the leaves of Citrus aurantifolia. Materials Today: Proceedings, 44, 1039-1042.
  • CLSI, (2020). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Colgecen, H., Calıskan, U., Kartal, M., & Buyukkartal, H. N. (2014). Comprehensive evaluation of phytoestrogen accumulation in plants and in vitro cultures of Medicago sativa L. 'Elçi' and natural tetraploid Trifolium pratense L.. Turkish Journal of Biology, 38, 619-627.
  • Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 16(7), 1831.
  • Das, G., Shin, H., & Patra, J. K. (2020). Comparative assessment of antioxidant, anti-diabetic and cytotoxic effects of three peel/shell food waste extract-mediated silver nanoparticles. International Journal of Nanomedicine, 15, 9075-9088.
  • Devi, M. P. I., Nallamuthu, N., Rajini, N., Rajulub, A. V., Ramc, N. H., & Siengchin, S. (2018). Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. International Journal of Biological Macromolecules, 118, 99-106.
  • Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11, 1-42.
  • Elci, S. (1982). The utilization of genetic resource in fodder crop breeding, Eucarpia. Fodder Crop Section, September, Aberystwyth, UK, 1-347.
  • Ellnain-Wojtaszek, M., Kruczynski, Z., & Kasprzak, J. (2003). Investigation of the free radical scavenging activitiy of Ginkgo biloba L. leaves. Fitoterapia, 74, 1-6.
  • EUCAST, (2014). Antimikrobik duyarlılık testine yönelik disk difüzyon yöntemi Sürüm.
  • Fierascu, I., Bunghez, I. R., Fierascu, R., Ion, R. M., Dinu-Pîrvu, C. E., & Nuţă, D. (2014). Characterization and Antioxidant Activity of Phytosynthesised Silver Nanoparticles Using Calendula officinalis Extract. Farmacia, 62, 1.
  • Firoozi, S., Jamzad, M., & Yari, M. (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of Nanostructure in Chemistry, 6, 357-364.
  • Gharari, Z., Hanachi, P., Sadeghinia, H., Walker, T. R. (2022). Cichorium intybus bio-callus synthesized silver nanoparticles: A promising antioxidant, antibacterial and anticancer compound. International Journal of Pharmaceutics, 625, 122062.
  • Ghorbani, H. R., Safekordi, A. A., Attar, H., & Rezayat Sorkhabadi, S. M. (2011). Biological and non-biological methods for silver nanoparticles synthesis. Chemical and Biochemical Engineering Quarterly, 25(3), 317-326.
  • Gonzalez-Carter, D. A., Leo, B. F., Ruenraroengsak, P., Chen, S., Goode, A. E., Theodorou, I. G., ... & Porter, A. E. (2017). Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific reports, 7(1), 42871.
  • He, B., Tan, J., Liew, K., & Liu, H. (2004). Synthesis of size-controlled ag nanoparticles. Journal of Molecular Catalysis A: Chemical, 221, 121-126.
  • lashin, I., Hasanin, M., & Hassan, S. A. M. (2023). Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conv. Bioref, 13, 10133-10146.
  • Jakovljević, D., Stanković, M., & Warchoł, M. (2022). Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell Tissue Organ Culture, 149, 61-79.
  • Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033.
  • Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533, 195-200.
  • Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823-1838.
  • Khaosaad, T., Krenn, L., Medjakovic, S., Ranner, A., Lossl, A., Nell, M., Jungbauer, A., & Vierheilig, H. (2008). Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. Journal of Plant Physiology, 165, 1161-1167.
  • Kumar, K. S., & Kathireswari, P. (2016). Biological synthesis of silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. International Journal of Current Microbiology and Applied Sciences, 5(3), 926-937.
  • Lashin, I., Fouda, A., Gobouri, A. A., Azab, E., Mohammedsaleh, Z. M., & Makharita, R. R. (2021). Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L.. Biomolecules, 11, 341.
  • Li, W. R., Xie, X. B., & Shi, Q. S. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24, 135-141.
  • Lu, F., Gao, Y., Huang, J., Sun, D., & Li, Q. (2014). Roles of biomolecules in the biosynthesis of silver nanoparticles: case of Gardenia jasminoides extract. Chinese Journal of Chemical Engineering, 22, 706-712.
  • Malik, M., Iqbal, M. A., Malik, M., Raza, M. A., Shahid, W., Choi, J. R., & Pham, P. V. (2022). Biosynthesis and characterizations of silver nanoparticles from Annona squamosa leaf and fruit extracts for size-dependent biomedical applications. Nanomaterials, 12(4), 616.
  • Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A. B., Durán, N., & Rubilar, O. (2019). Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 35, 88.
  • Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G.A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271-278.
  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871-12934.
  • Mude, N., Ingle, A., Gade, A., & Rai, M. (2009). Synthesis of silver nanoparticles using callus extract of Carica papaya-A first report. Journal of Plant Biochemistry and Biotechnology, 18(1), 83-86.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  • Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.. Colloids and Surfaces B: Biointerfaces, 79, 488-493.
  • Netala, V. N., Kotakadi, V. S., Nagam, V., Bobbu, P., Ghosh, S. B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807.
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10, 9642.
  • Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K., & Loake, G. J. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49(3), 149.
  • Ozturk Kup, F., Coskuncay, S., & Duman, F. (2020). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Materials Science and Engineering: C, 107, 110207.
  • Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., ... & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
  • Pandit, R. (2015). Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience, 7 (1), 15-19.
  • Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309.
  • Raja, K., Saravanakumar, A., & Vijayakumar, R. (2012). Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 490-494.
  • Rakesh, B., Srinatha, N., Rudresh Kumar, K. J., Madhu, A., Suresh Kumar, M. R., & Praveen, N. (2022). Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and in vitro leaf-derived callus extracts of Mucuna pruriens (L.) DC.. South African Journal of Botany, 148, 251-258.
  • Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environmental Nanotechnology, Monitoring & Management, 15, 100428.
  • Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R. E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus Extracts). Nanoscale Research Letters, 8, 318.
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9, 2673-2702.
  • Sahayaraj, K., Rajesh, S., & Rathi, J. M. (2012). Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Digest Journal of Nanomaterials and Biostructures, 7(4), 1557-1567.
  • Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 199, 344-370.
  • Sathiya, C. K., & Akilandeswari, S. (2014). Fabrication and characterization of silver nanoparticles using delonix elata leaf Broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 337-341.
  • Sharifi-Rad, M., Pohl, P., Epifano, F., & Álvarez-Suarez, J. M. (2020). Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials, 10, 2383.
  • Sharifi-Rad, M., Pohl, P., & Epifano, F. (2021). Phytofabrication of silver nanoparticles (agnps) with pharmaceutical capabilities using Otostegia persica (Burm.) Boiss. leaf extract. Nanomaterials, 11(4), 1045.
  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 7.
  • Snedecor, G. W., Cochran, W. G. (1967). Statistical methods. Iowa, USA: The Iowa State University Press, 327-329.
  • Solanki, A., Rathod, D., Patel, I. C., & Panigrahi, J. (2021). Impact of silver nanoparticles as antibacterial agent derived from leaf and callus of Celastrus paniculatus Willd. Future Journal of Pharmaceutical Sciences, 7, 60-69.
  • Szydlowska-Czerniak, A., Tulodziecka, A., & Sz1yk, E. (2012). A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst, 137, 3750.
  • Tian, X., Jiang, X., Welch, C., Croley, T. R., Wong, T. Y., Chen, C., & Yin, J. J. (2018). Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Applied Materials & Interfaces, 10, 8443-8450.
  • Vijayaraghavan, K., Kamala Nalini, S. P., Udaya Prakash, N., & Madhankumar, D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Colloids and Surfaces B: Biointerfaces, 94, 114-117.
  • Wang, C. K., & Lee, W. H. (1996). Separation, Characteristics, and Biological Activities of Phenolics in Areca Fruit. Journal of Agriculture and Food Chemistry, 44(8), 1-6.
  • WHO, (2019). World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. Joint News Release, 1-29.
  • Xia, Q. H., Ma, Y. J., & Wang, J. W. (2016). Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials, 6, 160.
  • Yeshchenko, O. A., Dmitruk, I. M., Alexeenko, A. A., Kotko, A. V., Verdal, J., & Pınchuk, A. O. (2013). Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surface Science, 608, 275-281.
  • Yugay, Y. A., Sorokina, M. R., Grigorchuk, V. P., Rusapetova, T. V., Silant’ev, V. E., Egorova, A. E., ... & Shkryl, Y. N. (2023). Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of Aristolochia manshuriensis. Journal of Functional Biomaterials, 14(9), 451.
  • Yurttas, E., Tetik, N., & Ayrilmis, N. (2022). Antimicrobial properties of 3D printed biocomposites with heat-treated wood flour using silver nanoparticles with leaf extract. Wood Material Science and Engineering, 18(2), 663-671.
There are 79 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Articles
Authors

Havva Karahan 0000-0003-0518-6265

Nurten Tetik 0000-0002-1883-1166

Hatice Çölgeçen 0000-0001-8246-4279

Publication Date December 31, 2023
Submission Date September 8, 2023
Published in Issue Year 2023

Cite

APA Karahan, H., Tetik, N., & Çölgeçen, H. (2023). Phytofabrication of silver nanoparticles using callus extracts of natural tetraploid Trifolium pratense L. and its bioactivities. Frontiers in Life Sciences and Related Technologies18-28. https://doi.org/10.51753/flsrt.1357092

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.