Epiphytic bacterial community analysis of the macroalgae Gongolaria barbata collected from the Sinop region on the Black Sea coast
Year 2024,
, 217 - 223, 30.12.2024
Cumhur Avşar
,
Fatih Gümüş
Abstract
The purpose of this study was to ascertain the epiphytic bacterial community structure of macroalgae Gongolaria barbata (Stackhouse) Kuntze samples taken from seawater using Single Strand Conformation Polymorphism (SSCP) analysis. It also aims to quickly obtain information regarding the composition of communities and the quality of the seawater. G. barbata samples were subjected to total DNA extraction, SSCP analysis was conducted with a focus on the V4-V5 region of 16S rRNA, and the bacterial community structure was determined through sequence analysis of a few chosen bands. Upon analyzing the SSCP gel picture and dendrogram, it was seen that the bacterial community structure on the macroalgae varied based on the location as well as within the same species. It was noted that the Gammaproteobacteria class accounted for 84.375 percent of the bands that were acquired from the SSCP analysis. The fact that the sequencing data generated from the bands collected at various points largely resembled Vibrio and Klebsiella genera was notable. This situation highlights the strong link between harmful or opportunistic infectious organisms and macroalgae species, several of which have been suggested for ingestion as food. Furthermore, even if research in the literature suggests that the macroalgae and the microbial load of the nearby water sample do not significantly correlate, we can conclude that this data suggests the possibility of risk.
Project Number
No project support was received for the study.
References
- Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech, 5(6), 853-866.
- Aires, T., Serrão, E. A., & Engelen, A. H. (2016). Host and environmental specificity in bacterial communities associated with two highly invasive marine species (genus Asparagopsis). Frontiers in Microbiology, 7, 559.
- Araj, G. F., Taleb, R., El Beayni, N. K., & Goksu, E. (2019). Vibrio albensis: An unusual urinary tract infection in a healthy male. Journal of Infection and Public Health, 12(5), 712-713.
- Avsar, C., & Aras, E. S. (2020). Community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying bacteria. Folia Microbiologica, 65(3), 497-510.
- Barberi, O. N., Byron, C. J., Burkholder, K. M., St. Gelais, A. T., & Williams, A. K. (2020). Assessment of bacterial pathogens on edible macroalgae in coastal waters. Journal of Applied Phycology, 32(1), 683-696.
- Bengtsson, M. M., Sjøtun, K., & Øvreås, L. (2010). Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquatic Microbial Ecology, 60(1), 71-83.
- Berber, I., Avşar, C., & Koyuncu, H. (2015). Antimicrobial and antioxidant activities of Cystoseira crinita Duby and Ulva intestinalis Linnaeus from the coastal region of Sinop, Turkey. Journal of Coastal Life Medicine, 3(6), 441-445.
- Blikra, M., Løvda, T., Vaka, M., Roiha, I. S., & Lunestad, B. T. (2019). Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). Journal of Science Food Agriculture, 99, 1198-1206.
- Burke, C., Thomas, T., Lewis, M., Steinberg, P., & Kjelleberg, S. (2011). Composition, uniqueness, and variability of the epiphytic bacterial community of the green alga Ulva australis. The ISME Journal, 5(4), 590-600.
- Byun, S. O., Fang, Q., Zhou, H., & Hickford, J. G. H. (2009). An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Analytical Biochemistry, 385(1), 174-175.
- Califano, G., Kwantes, M., Abreu, M. H., Costa, R., & Wichard, T. (2020). Cultivating the macroalgal holobiont: Effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science, 7, 52.
- Comba-González, N. B., Ruiz-Toquica, J. S., Lopez-Kleine, L., & Montoya-Castano, D. (2016). Epiphytic bacteria of macroalgae of the genus Ulva and their potential in producing enzymes having biotechnological interest. Journal of Marine Biology, 2016, 2-9.
- Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791.
- Florez, J. Z., Camus, C., Hengst, M. B., & Buschmann, A. H. (2017). A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Frontiers in Microbiology, 8, 2561.
- Franco-Duarte, R., Černáková, L., Kadam, S., S. Kaushik, K., Salehi, B., Bevilacqua, A., & Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms from past to present. Microorganisms, 7(5), 130.
- Girão, M., Alexandrino, D. A., Cao, W., Costa, I., Jia, Z., & Carvalho, M. F. (2024). Unveiling the culturable and non‐culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast. Environmental Microbiology, 26(4), e16620.
- Kaur, M., Saini, K. C., Mallick, A., & Bast, F. (2023). Seaweed-associated epiphytic bacteria: Diversity, ecological and economic implications. Aquatic Botany, 189, 103698.
- Lachnit, T., Meske, D., Wahl, M., Harder, T., & Schmitz, R. (2011). Epibacterial community patterns on marine macroalgae are host‐specific but temporally variable. Environmental Microbiology, 13(3), 655-665.
- Lee, O. O., Wong, Y. H., & Qian, P. Y. (2009). Inter-and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Applied and Environmental Microbiology, 75(11), 3513-3521.
- Lu, D. C., Wang, F. Q., Amann, R. I., Teeling, H., & Du, Z. J. (2023). Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae. Microbiome, 11(1), 126.
- Mahmud, Z. H., Neogi, S. B., Kassu, A., Huong, B. T., Jahid, I. K., Iqbal, K. J., Islam, M. S., & Ota, F. (2008). Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64(2), 209-218.
- Mancuso, F. P., D'hondt, S., Willems, A., Airoldi, L., & De Clerck, O. (2016). Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Frontiers in Microbiology, 7, 476.
- Michelou, V. K., Caporaso, J. G., Knight, R., & Palumbi, S. R. (2013). The ecology of microbial communities associated with Macrocystis pyrifera. PLoS One, 8(6), e67480.
- Nahor, O., Israel, Á., Barger, N., Rubin-Blum, M., & Luzzatto-Knaan, T. (2024). Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: Comparative analysis of bacterial communities across seaweed phyla. Scientific Reports, 14(1), 18631.
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.
- Schwieger, F., & Tebbe, C. C. (1998). A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12), 4870-4876.
- Schwieger, F., & Tebbe, C. C. (2000). Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-Linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Applied and Environmental Microbiology, 66(8), 3556-3565.
- Serebryakova, A., Aires, T., Viard, F., Serrão, E. A., & Engelen, A. H. (2018). Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One, 13(12), e0206734.
- Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R., ... & Tebbe, C. C. (2007). Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? Journal of Microbiological Methods, 69(3), 470-479.
- Singh, R. P., & Reddy, C. R. K. (2014). Seaweed–microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213-230.
- Staufenberger, T., Thiel, V., Wiese, J., & Imhoff, J. F. (2008). Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiology Ecology, 64(1), 65-77.
- Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030-11035.
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution.
- Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME Journal, 4(2), 301-311.
- Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., ... & Oancea, F. (2019). Extraction and characterization of alginate from an edible brown seaweed (Cystoseira barbata) harvested in the Romanian Black Sea. Marine Drugs, 17(7), 405.
- Wichachucherd, B., Prathep, A., & Zuccarello, G. C. (2014). Phylogeography of Padina boryana (Dictyotales, Phaeophyceae) around the Thai-Malay Peninsula. European Journal of Phycology, 49(3), 313-323.
- Wiese, J., Thiel, V., Nagel, K., Staufenberger, T., & Imhoff, J. F. (2009). Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Marine Biotechnology, 11(2), 287-300.
- Xiao, Z., Feng, C., Gao, B., Huang, Y., Long, L., & Yang, F. (2024). Marine macroalgae and their associated bacterial communities affect larval settlement and survivorship of the coral Pocillopora damicornis. Marine Environmental Research, 199, 106597.
- Vieira, C., Thomas, O. P., Culioli, G., Genta-Jouve, G., Houlbreque, F., Gaubert, J., ... & Payri, C. E. (2016). Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Scientific Reports, 6(1), 1-11.
- Vigil, B. E., Ascue, F., Ayala, R. Y., Murúa, P., Calderon, M. S., & Bustamante, D. E. (2024). Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Scientific Reports, 14(1), 18577.
- Yang, Z., Sun, T., Chen, J., Wang, J., Yu, X., Zhao, Y., ... & Xiao, H. (2023). The contribution of host tissue location and sex to epiphytic bacterial community assembly of Sargassum thunbergii. Ecological Indicators, 154, 110871.
Epiphytic bacterial community analysis of the macroalgae Gongolaria barbata collected from the Sinop region on the Black Sea coast
Year 2024,
, 217 - 223, 30.12.2024
Cumhur Avşar
,
Fatih Gümüş
Abstract
The purpose of this study was to ascertain the epiphytic bacterial community structure of macroalgae Gongolaria barbata (Stackhouse) Kuntze samples taken from seawater using Single Strand Conformation Polymorphism (SSCP) analysis. It also aims to quickly obtain information regarding the composition of communities and the quality of the seawater. G. barbata samples were subjected to total DNA extraction, SSCP analysis was conducted with a focus on the V4-V5 region of 16S rRNA, and the bacterial community structure was determined through sequence analysis of a few chosen bands. Upon analyzing the SSCP gel picture and dendrogram, it was seen that the bacterial community structure on the macroalgae varied based on the location as well as within the same species. It was noted that the Gammaproteobacteria class accounted for 84.375 percent of the bands that were acquired from the SSCP analysis. The fact that the sequencing data generated from the bands collected at various points largely resembled Vibrio and Klebsiella genera was notable. This situation highlights the strong link between harmful or opportunistic infectious organisms and macroalgae species, several of which have been suggested for ingestion as food. Furthermore, even if research in the literature suggests that the macroalgae and the microbial load of the nearby water sample do not significantly correlate, we can conclude that this data suggests the possibility of risk.
Project Number
No project support was received for the study.
References
- Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech, 5(6), 853-866.
- Aires, T., Serrão, E. A., & Engelen, A. H. (2016). Host and environmental specificity in bacterial communities associated with two highly invasive marine species (genus Asparagopsis). Frontiers in Microbiology, 7, 559.
- Araj, G. F., Taleb, R., El Beayni, N. K., & Goksu, E. (2019). Vibrio albensis: An unusual urinary tract infection in a healthy male. Journal of Infection and Public Health, 12(5), 712-713.
- Avsar, C., & Aras, E. S. (2020). Community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying bacteria. Folia Microbiologica, 65(3), 497-510.
- Barberi, O. N., Byron, C. J., Burkholder, K. M., St. Gelais, A. T., & Williams, A. K. (2020). Assessment of bacterial pathogens on edible macroalgae in coastal waters. Journal of Applied Phycology, 32(1), 683-696.
- Bengtsson, M. M., Sjøtun, K., & Øvreås, L. (2010). Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquatic Microbial Ecology, 60(1), 71-83.
- Berber, I., Avşar, C., & Koyuncu, H. (2015). Antimicrobial and antioxidant activities of Cystoseira crinita Duby and Ulva intestinalis Linnaeus from the coastal region of Sinop, Turkey. Journal of Coastal Life Medicine, 3(6), 441-445.
- Blikra, M., Løvda, T., Vaka, M., Roiha, I. S., & Lunestad, B. T. (2019). Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). Journal of Science Food Agriculture, 99, 1198-1206.
- Burke, C., Thomas, T., Lewis, M., Steinberg, P., & Kjelleberg, S. (2011). Composition, uniqueness, and variability of the epiphytic bacterial community of the green alga Ulva australis. The ISME Journal, 5(4), 590-600.
- Byun, S. O., Fang, Q., Zhou, H., & Hickford, J. G. H. (2009). An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Analytical Biochemistry, 385(1), 174-175.
- Califano, G., Kwantes, M., Abreu, M. H., Costa, R., & Wichard, T. (2020). Cultivating the macroalgal holobiont: Effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science, 7, 52.
- Comba-González, N. B., Ruiz-Toquica, J. S., Lopez-Kleine, L., & Montoya-Castano, D. (2016). Epiphytic bacteria of macroalgae of the genus Ulva and their potential in producing enzymes having biotechnological interest. Journal of Marine Biology, 2016, 2-9.
- Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791.
- Florez, J. Z., Camus, C., Hengst, M. B., & Buschmann, A. H. (2017). A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Frontiers in Microbiology, 8, 2561.
- Franco-Duarte, R., Černáková, L., Kadam, S., S. Kaushik, K., Salehi, B., Bevilacqua, A., & Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms from past to present. Microorganisms, 7(5), 130.
- Girão, M., Alexandrino, D. A., Cao, W., Costa, I., Jia, Z., & Carvalho, M. F. (2024). Unveiling the culturable and non‐culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast. Environmental Microbiology, 26(4), e16620.
- Kaur, M., Saini, K. C., Mallick, A., & Bast, F. (2023). Seaweed-associated epiphytic bacteria: Diversity, ecological and economic implications. Aquatic Botany, 189, 103698.
- Lachnit, T., Meske, D., Wahl, M., Harder, T., & Schmitz, R. (2011). Epibacterial community patterns on marine macroalgae are host‐specific but temporally variable. Environmental Microbiology, 13(3), 655-665.
- Lee, O. O., Wong, Y. H., & Qian, P. Y. (2009). Inter-and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Applied and Environmental Microbiology, 75(11), 3513-3521.
- Lu, D. C., Wang, F. Q., Amann, R. I., Teeling, H., & Du, Z. J. (2023). Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae. Microbiome, 11(1), 126.
- Mahmud, Z. H., Neogi, S. B., Kassu, A., Huong, B. T., Jahid, I. K., Iqbal, K. J., Islam, M. S., & Ota, F. (2008). Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64(2), 209-218.
- Mancuso, F. P., D'hondt, S., Willems, A., Airoldi, L., & De Clerck, O. (2016). Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Frontiers in Microbiology, 7, 476.
- Michelou, V. K., Caporaso, J. G., Knight, R., & Palumbi, S. R. (2013). The ecology of microbial communities associated with Macrocystis pyrifera. PLoS One, 8(6), e67480.
- Nahor, O., Israel, Á., Barger, N., Rubin-Blum, M., & Luzzatto-Knaan, T. (2024). Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: Comparative analysis of bacterial communities across seaweed phyla. Scientific Reports, 14(1), 18631.
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.
- Schwieger, F., & Tebbe, C. C. (1998). A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12), 4870-4876.
- Schwieger, F., & Tebbe, C. C. (2000). Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-Linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Applied and Environmental Microbiology, 66(8), 3556-3565.
- Serebryakova, A., Aires, T., Viard, F., Serrão, E. A., & Engelen, A. H. (2018). Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One, 13(12), e0206734.
- Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R., ... & Tebbe, C. C. (2007). Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? Journal of Microbiological Methods, 69(3), 470-479.
- Singh, R. P., & Reddy, C. R. K. (2014). Seaweed–microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213-230.
- Staufenberger, T., Thiel, V., Wiese, J., & Imhoff, J. F. (2008). Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiology Ecology, 64(1), 65-77.
- Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030-11035.
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution.
- Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME Journal, 4(2), 301-311.
- Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., ... & Oancea, F. (2019). Extraction and characterization of alginate from an edible brown seaweed (Cystoseira barbata) harvested in the Romanian Black Sea. Marine Drugs, 17(7), 405.
- Wichachucherd, B., Prathep, A., & Zuccarello, G. C. (2014). Phylogeography of Padina boryana (Dictyotales, Phaeophyceae) around the Thai-Malay Peninsula. European Journal of Phycology, 49(3), 313-323.
- Wiese, J., Thiel, V., Nagel, K., Staufenberger, T., & Imhoff, J. F. (2009). Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Marine Biotechnology, 11(2), 287-300.
- Xiao, Z., Feng, C., Gao, B., Huang, Y., Long, L., & Yang, F. (2024). Marine macroalgae and their associated bacterial communities affect larval settlement and survivorship of the coral Pocillopora damicornis. Marine Environmental Research, 199, 106597.
- Vieira, C., Thomas, O. P., Culioli, G., Genta-Jouve, G., Houlbreque, F., Gaubert, J., ... & Payri, C. E. (2016). Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Scientific Reports, 6(1), 1-11.
- Vigil, B. E., Ascue, F., Ayala, R. Y., Murúa, P., Calderon, M. S., & Bustamante, D. E. (2024). Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Scientific Reports, 14(1), 18577.
- Yang, Z., Sun, T., Chen, J., Wang, J., Yu, X., Zhao, Y., ... & Xiao, H. (2023). The contribution of host tissue location and sex to epiphytic bacterial community assembly of Sargassum thunbergii. Ecological Indicators, 154, 110871.