Research Article
BibTex RIS Cite

Analysis of potential fire and explosion incidents in an LNG terminal in a port area using the FRAM method

Year 2025, Volume: 6 Issue: 1, 35 - 44, 30.04.2025
https://doi.org/10.51753/flsrt.1612860

Abstract

The commercialization of liquefied natural gas (LNG) offers significant benefits to various industries; however, its chemical properties pose substantial risks, potentially resulting in catastrophic incidents. The transportation, storage, and utilization of flammable substances like LNG can lead to industrial accidents, such as fires and explosions, if not adequately controlled. To mitigate these risks, conducting a comprehensive hazard and risk analysis at the worksite and implementing appropriate safety measures are essential. This study focuses on analyzing potential fire and explosion scenarios that may arise in a port area engaged in LNG operations, employing the Functional Resonance Analysis Method (FRAM). Accident processes are examined through functional analysis, identifying 20 distinct functions. Of these, 7 functions were categorized as high risk, 5 as medium risk, and 8 as low risk. Based on the findings, this study provides recommendations for safety measures aimed at safeguarding both occupational health and environmental integrity.

References

  • Akpinar, E., & Basibuyuk, A. (2011). Jeoekonomik önemi giderek artan bir enerji kaynağı: doğalgaz. Electronic Turkish Studies, 6(3).
  • Animah, I., & Shafiee, M. (2020). Application of risk analysis in the liquefied natural gas (LNG) sector: An overview. Journal of Loss Prevention in the Process Industries, 63, 103980.
  • Avci, A., Can, M., & Kilic, M. Doğal gaz sıvılaştırma yöntemleri, sıvılaştırılmış doğal gazın (lng) nakli ve depolanması üzerine bir inceleme. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 1(3), 137-144.
  • Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European journal of operational research, 253(1), 1-13.
  • Baalisampang, T., Abbassi, R., Garaniya, V., Khan, F., & Dadashzadeh, M. (2019). Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG. Process Safety and Environmental Protection, 128, 259-272.
  • Besikci, E. B., & Sihmantepe, A. (2020). Deniz kazalarının çözümlenmesine güncel bir bakış: fram yöntemi ile analiz örneği. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12, 69-90. DOI: 10.18613/deudfd.740159.
  • Dan, S., Lee, C. J., Park, J., Shin, D., & Yoon, E. S. (2014). Quantitative risk analysis of fire and explosion on the top-side LNG-liquefaction process of LNG-FPSO. Process Safety and Environmental Protection, 92(5), 430-441.
  • De Carvalho, P. V. R. (2011). The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering & System Safety, 96(11), 1482-1498.
  • Foss, M. M., Delano, F., Gulen, G., & Makaryan, R. (2003). LNG safety and security. Center for Energy Economics (CEE).
  • Franca, J. E., Hollnagel, E., dos Santos, I. J. L., & Haddad, A. N. (2021). Analysing human factors and non-technical skills in offshore drilling operations using FRAM (functional resonance analysis method). Cognition, Technology & Work, 23(3), 553-566.
  • Furniss, D., Curzon, P., & Blandford, A. (2016). Using FRAM beyond safety: a case study to explore how sociotechnical systems can flourish or stall. Theoretical Issues in Ergonomics Science, 17(5-6), 507-532.
  • Hill, R., & Slater, D. (2024). Using a metadata approach to extend the functional resonance analysis method to model quantitatively, emergent behaviours in complex systems. Systems, 12(3), 90.
  • Hollnagel, E. (2012). An application of the Functional Resonance Analysis Method (FRAM) to risk assessment of organisational change. 1-87.
  • Hollnagel, E., Hounsgaard, J., & Colligan, L. (2014). FRAM-the Functional Resonance Analysis Method: a handbook for the practical use of the method. Centre for Quality, Region of Southern Denmark. 1-22.
  • Hollnagel, E. (2016). Barriers and accident prevention. Routledge. 1-242.
  • Huffman, M., Hutchison, V., Ranganathan, S., Noll, G., Baxter, C., Hildebrand, M., & Wang, Q. (2024). A comparative bibliometric study of the transport risk considerations of liquefied natural gas and liquefied petroleum gas. The Canadian Journal of Chemical Engineering, 102(6), 2019-2038.
  • Koruklu, M. S., & Ozay, M. E. (2021). Bir alışveriş merkezinin deprem sonrası müdahale aşamasının fonksiyonel rezonans analiz metodu ile analizi. International Journal of Pure and Applied Sciences, 7(1), 63-77.
  • Li, J., & Huang, Z. (2012). Fire and explosion risk analysis and evaluation for LNG ships. Procedia Engineering, 45, 70-76.
  • Ma, G., & Huang, Y. (2019). Safety assessment of explosions during gas stations refilling process. Journal of Loss Prevention in the Process Industries, 60, 133-144.
  • Naeini, A. M., & Nadeau, S. (2022). Application of FRAM to perform risk analysis of the introduction of a data glove to assembly tasks. Robotics and Computer-Integrated Manufacturing, 74, 102285.
  • Nubli, H., Fajri, A., Prabowo, A. R., & Sohn, J. M. (2022). CFD implementation to mitigate the LNG leakage consequences: A review of explosion accident calculation on LNG-fueled ships. Procedia Structural Integrity, 41, 343-350.
  • Ozsayan, S., & Barlas, B. (2023). Tersanelerde Vinç ile Yük Elleçleme Operasyonları ve FRAM Yöntemi Kullanılarak Risk Analizi. Gemi ve Deniz Teknolojisi, (223), 13-28.
  • Patriarca, R., Di Gravio, G., & Costantino, F. (2017). A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 49-60.
  • Patriarca, R., Di Gravio, G., Woltjer, R., Costantino, F., Praetorius, G., Ferreira, P., & Hollnagel, E. (2020). Framing the FRAM: A literature review on the functional resonance analysis method. Safety Science, 129, 104827.
  • Pospíšil, J., Charvát, P., Arsenyeva, O., Klimeš, L., Špiláček, M., & Klemeš, J. J. (2019). Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage. Renewable and Sustainable Energy Reviews, 99, 1-15.
  • Rosa, L. V., Haddad, A. N., & de Carvalho, P. V. R. (2015). Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM). Cognition, Technology & Work, 17, 559-573.
  • Shirazi, L., Sarmad, M., Rostami, R. M., Moein, P., Zare, M., & Mohammadbeigy, K. (2019). Feasibility study of the small scale LNG plant infrastructure for gas supply in north of Iran (Case Study). Sustainable Energy Technologies and Assessments, 35, 220-229.
  • Wu, Y., Sun, J., Yang, G., Cui, L., Wang, Z., & Wang, M. (2023). Research on digital twin based temperature field monitoring system for LNG storage tanks. Measurement, 215, 112864.

Analysis of potential fire and explosion incidents in an LNG terminal in a port area using the FRAM method

Year 2025, Volume: 6 Issue: 1, 35 - 44, 30.04.2025
https://doi.org/10.51753/flsrt.1612860

Abstract

The commercialization of liquefied natural gas (LNG) offers significant benefits to various industries; however, its chemical properties pose substantial risks, potentially resulting in catastrophic incidents. The transportation, storage, and utilization of flammable substances like LNG can lead to industrial accidents, such as fires and explosions, if not adequately controlled. To mitigate these risks, conducting a comprehensive hazard and risk analysis at the worksite and implementing appropriate safety measures are essential. This study focuses on analyzing potential fire and explosion scenarios that may arise in a port area engaged in LNG operations, employing the Functional Resonance Analysis Method (FRAM). Accident processes are examined through functional analysis, identifying 20 distinct functions. Of these, 7 functions were categorized as high risk, 5 as medium risk, and 8 as low risk. Based on the findings, this study provides recommendations for safety measures aimed at safeguarding both occupational health and environmental integrity.

References

  • Akpinar, E., & Basibuyuk, A. (2011). Jeoekonomik önemi giderek artan bir enerji kaynağı: doğalgaz. Electronic Turkish Studies, 6(3).
  • Animah, I., & Shafiee, M. (2020). Application of risk analysis in the liquefied natural gas (LNG) sector: An overview. Journal of Loss Prevention in the Process Industries, 63, 103980.
  • Avci, A., Can, M., & Kilic, M. Doğal gaz sıvılaştırma yöntemleri, sıvılaştırılmış doğal gazın (lng) nakli ve depolanması üzerine bir inceleme. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 1(3), 137-144.
  • Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European journal of operational research, 253(1), 1-13.
  • Baalisampang, T., Abbassi, R., Garaniya, V., Khan, F., & Dadashzadeh, M. (2019). Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG. Process Safety and Environmental Protection, 128, 259-272.
  • Besikci, E. B., & Sihmantepe, A. (2020). Deniz kazalarının çözümlenmesine güncel bir bakış: fram yöntemi ile analiz örneği. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12, 69-90. DOI: 10.18613/deudfd.740159.
  • Dan, S., Lee, C. J., Park, J., Shin, D., & Yoon, E. S. (2014). Quantitative risk analysis of fire and explosion on the top-side LNG-liquefaction process of LNG-FPSO. Process Safety and Environmental Protection, 92(5), 430-441.
  • De Carvalho, P. V. R. (2011). The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering & System Safety, 96(11), 1482-1498.
  • Foss, M. M., Delano, F., Gulen, G., & Makaryan, R. (2003). LNG safety and security. Center for Energy Economics (CEE).
  • Franca, J. E., Hollnagel, E., dos Santos, I. J. L., & Haddad, A. N. (2021). Analysing human factors and non-technical skills in offshore drilling operations using FRAM (functional resonance analysis method). Cognition, Technology & Work, 23(3), 553-566.
  • Furniss, D., Curzon, P., & Blandford, A. (2016). Using FRAM beyond safety: a case study to explore how sociotechnical systems can flourish or stall. Theoretical Issues in Ergonomics Science, 17(5-6), 507-532.
  • Hill, R., & Slater, D. (2024). Using a metadata approach to extend the functional resonance analysis method to model quantitatively, emergent behaviours in complex systems. Systems, 12(3), 90.
  • Hollnagel, E. (2012). An application of the Functional Resonance Analysis Method (FRAM) to risk assessment of organisational change. 1-87.
  • Hollnagel, E., Hounsgaard, J., & Colligan, L. (2014). FRAM-the Functional Resonance Analysis Method: a handbook for the practical use of the method. Centre for Quality, Region of Southern Denmark. 1-22.
  • Hollnagel, E. (2016). Barriers and accident prevention. Routledge. 1-242.
  • Huffman, M., Hutchison, V., Ranganathan, S., Noll, G., Baxter, C., Hildebrand, M., & Wang, Q. (2024). A comparative bibliometric study of the transport risk considerations of liquefied natural gas and liquefied petroleum gas. The Canadian Journal of Chemical Engineering, 102(6), 2019-2038.
  • Koruklu, M. S., & Ozay, M. E. (2021). Bir alışveriş merkezinin deprem sonrası müdahale aşamasının fonksiyonel rezonans analiz metodu ile analizi. International Journal of Pure and Applied Sciences, 7(1), 63-77.
  • Li, J., & Huang, Z. (2012). Fire and explosion risk analysis and evaluation for LNG ships. Procedia Engineering, 45, 70-76.
  • Ma, G., & Huang, Y. (2019). Safety assessment of explosions during gas stations refilling process. Journal of Loss Prevention in the Process Industries, 60, 133-144.
  • Naeini, A. M., & Nadeau, S. (2022). Application of FRAM to perform risk analysis of the introduction of a data glove to assembly tasks. Robotics and Computer-Integrated Manufacturing, 74, 102285.
  • Nubli, H., Fajri, A., Prabowo, A. R., & Sohn, J. M. (2022). CFD implementation to mitigate the LNG leakage consequences: A review of explosion accident calculation on LNG-fueled ships. Procedia Structural Integrity, 41, 343-350.
  • Ozsayan, S., & Barlas, B. (2023). Tersanelerde Vinç ile Yük Elleçleme Operasyonları ve FRAM Yöntemi Kullanılarak Risk Analizi. Gemi ve Deniz Teknolojisi, (223), 13-28.
  • Patriarca, R., Di Gravio, G., & Costantino, F. (2017). A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 49-60.
  • Patriarca, R., Di Gravio, G., Woltjer, R., Costantino, F., Praetorius, G., Ferreira, P., & Hollnagel, E. (2020). Framing the FRAM: A literature review on the functional resonance analysis method. Safety Science, 129, 104827.
  • Pospíšil, J., Charvát, P., Arsenyeva, O., Klimeš, L., Špiláček, M., & Klemeš, J. J. (2019). Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage. Renewable and Sustainable Energy Reviews, 99, 1-15.
  • Rosa, L. V., Haddad, A. N., & de Carvalho, P. V. R. (2015). Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM). Cognition, Technology & Work, 17, 559-573.
  • Shirazi, L., Sarmad, M., Rostami, R. M., Moein, P., Zare, M., & Mohammadbeigy, K. (2019). Feasibility study of the small scale LNG plant infrastructure for gas supply in north of Iran (Case Study). Sustainable Energy Technologies and Assessments, 35, 220-229.
  • Wu, Y., Sun, J., Yang, G., Cui, L., Wang, Z., & Wang, M. (2023). Research on digital twin based temperature field monitoring system for LNG storage tanks. Measurement, 215, 112864.
There are 28 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Research Article
Authors

Ahmet Gökcan 0000-0002-2257-4668

Hacer Handan Demir 0000-0001-6157-9181

Rabia Akdoğan 0000-0002-9707-9848

Fahri Oluk 0000-0001-9640-2407

Göksel Demir 0000-0002-7815-1197

Submission Date January 3, 2025
Acceptance Date April 14, 2025
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Gökcan, A., Demir, H. H., Akdoğan, R., … Oluk, F. (2025). Analysis of potential fire and explosion incidents in an LNG terminal in a port area using the FRAM method. Frontiers in Life Sciences and Related Technologies, 6(1), 35-44. https://doi.org/10.51753/flsrt.1612860

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.